通过热力学理论对物理气相传输(PVT)法AlN晶体生长过饱和度进行分析,分别从软件模拟和晶体生长实验对衬底表面的温度分布进行调控,进而控制衬底表面AlN晶体生长的驱动力。理论上,采用Comsol模拟软件对坩埚结构的温度分布进行模拟仿真,...通过热力学理论对物理气相传输(PVT)法AlN晶体生长过饱和度进行分析,分别从软件模拟和晶体生长实验对衬底表面的温度分布进行调控,进而控制衬底表面AlN晶体生长的驱动力。理论上,采用Comsol模拟软件对坩埚结构的温度分布进行模拟仿真,模拟结果表明:复合型衬底可以显著改变衬底表面的温度分布,达到改变衬底表面AlN气氛的过饱和度的目的;实验上,采用PVT法AlN晶体的生长实验验证了软件模拟结果。采用复合型衬底生长AlN晶体时,通过对衬底表面的温度分布调控可有效控制晶体生长驱动力,进而实现形核位置和形核数量的控制。经过6~8 h AlN晶体生长后,可获得尺寸约为12 mm、厚度约为3 mm的AlN单晶。喇曼光谱和XRD双晶摇摆曲线测试结果表明晶体质量良好。展开更多
Rapidly solidified Al87Ni7Cu3Nd3 metallic glasses, prepared by using melt spinning, were treated under both isothermal and non-isothermal regime. The amorphous ribbon and the annealed samples were closely examined by ...Rapidly solidified Al87Ni7Cu3Nd3 metallic glasses, prepared by using melt spinning, were treated under both isothermal and non-isothermal regime. The amorphous ribbon and the annealed samples were closely examined by means of differential scanning calorimetric, conventional X-ray diffraction and high resolution transmission electron microscopy with selected-area electron diffraction, with special interest in primary crystallization into α-Al nanocrystalline particles, in order to understand structural characteristics of Al-based amorphous/nanocrystalline alloys, and nucleation and grain growth mechanism on the nanometer scale during primary crystallization. The results show that, the as-prepared ribbons are fully amorphous and homogeneous in the micron scale, but contain high density of quenched-in clusters or crystallite embryos. Primary crystallization mainly leads to formation of two-phase mixture of a-Al crystal and residual amorphous phase. The annealed ribbons exposed isother-mally at HOP C for 5, 130 minutes and heated continuously up to less than 310℃ at 40℃ C/min consist of large amount of α-Al fcc crystal nanoparticles dispersed uniformly in an amorphous matrix. However, a very little amount of finer orthorhombic Al3Ni intermetalics particles exist in the annealed ribbons heated up to 310℃. During primary crystallization, the leading kinetic mechanics to impede growth of the α-Al crystal is soft impingement, instead of geometric impingement.展开更多
High aspect ratio (up to 100) CdS nanowires having average diameter of 15 nm and length varying from 0.5-1.5 μm have been synthesized using solvothermal technique in ethylenediamine as a solvent at 120℃ and the effe...High aspect ratio (up to 100) CdS nanowires having average diameter of 15 nm and length varying from 0.5-1.5 μm have been synthesized using solvothermal technique in ethylenediamine as a solvent at 120℃ and the effect of Mn doping on morphology and optical properties has been studied. X-ray diffraction analysis shows the typical in-ter-planar spacing and the diffraction peaks corresponding to the hexagonal wurzite phase of CdS. Morphological study has been done through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the optical studies have been conducted through absorption spectra and room temperature photoluminescence (PL).展开更多
文摘通过热力学理论对物理气相传输(PVT)法AlN晶体生长过饱和度进行分析,分别从软件模拟和晶体生长实验对衬底表面的温度分布进行调控,进而控制衬底表面AlN晶体生长的驱动力。理论上,采用Comsol模拟软件对坩埚结构的温度分布进行模拟仿真,模拟结果表明:复合型衬底可以显著改变衬底表面的温度分布,达到改变衬底表面AlN气氛的过饱和度的目的;实验上,采用PVT法AlN晶体的生长实验验证了软件模拟结果。采用复合型衬底生长AlN晶体时,通过对衬底表面的温度分布调控可有效控制晶体生长驱动力,进而实现形核位置和形核数量的控制。经过6~8 h AlN晶体生长后,可获得尺寸约为12 mm、厚度约为3 mm的AlN单晶。喇曼光谱和XRD双晶摇摆曲线测试结果表明晶体质量良好。
文摘Rapidly solidified Al87Ni7Cu3Nd3 metallic glasses, prepared by using melt spinning, were treated under both isothermal and non-isothermal regime. The amorphous ribbon and the annealed samples were closely examined by means of differential scanning calorimetric, conventional X-ray diffraction and high resolution transmission electron microscopy with selected-area electron diffraction, with special interest in primary crystallization into α-Al nanocrystalline particles, in order to understand structural characteristics of Al-based amorphous/nanocrystalline alloys, and nucleation and grain growth mechanism on the nanometer scale during primary crystallization. The results show that, the as-prepared ribbons are fully amorphous and homogeneous in the micron scale, but contain high density of quenched-in clusters or crystallite embryos. Primary crystallization mainly leads to formation of two-phase mixture of a-Al crystal and residual amorphous phase. The annealed ribbons exposed isother-mally at HOP C for 5, 130 minutes and heated continuously up to less than 310℃ at 40℃ C/min consist of large amount of α-Al fcc crystal nanoparticles dispersed uniformly in an amorphous matrix. However, a very little amount of finer orthorhombic Al3Ni intermetalics particles exist in the annealed ribbons heated up to 310℃. During primary crystallization, the leading kinetic mechanics to impede growth of the α-Al crystal is soft impingement, instead of geometric impingement.
文摘High aspect ratio (up to 100) CdS nanowires having average diameter of 15 nm and length varying from 0.5-1.5 μm have been synthesized using solvothermal technique in ethylenediamine as a solvent at 120℃ and the effect of Mn doping on morphology and optical properties has been studied. X-ray diffraction analysis shows the typical in-ter-planar spacing and the diffraction peaks corresponding to the hexagonal wurzite phase of CdS. Morphological study has been done through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the optical studies have been conducted through absorption spectra and room temperature photoluminescence (PL).