The mechanical and fatigue properties of SA508-Ⅳ steel with martensite and granular bainite, respectively, were studied. The mechanical tests results showed that the ultimate tensile strength and impact toughness of ...The mechanical and fatigue properties of SA508-Ⅳ steel with martensite and granular bainite, respectively, were studied. The mechanical tests results showed that the ultimate tensile strength and impact toughness of the specimen with martensite were 830 MPa and 158 J, respectively, and those of the specimen with granular bainite were 811 MPa and 115 J, respectively. The former had higher tensile strength and impact toughness than the latter. The impact tests results showed that the former belonged to typical dimple fracture, while the latter belonged to brittle fracture. The fatigue tests results showed that the fatigue life of the specimen with martensite was 2717 cycles, and that of the specimen with granular bainite was 1545 cycles under the strain amplitude of ± 0.45%. The specimen with martensite had fewer crack initiation points, narrower fatigue striations separation, and larger volume fraction of high-angle grain boundaries than the latter. The fewer crack initiation points meant fewer fatigue cracks, the narrower fatigue striations separation meant slower crack propagation rate, and the larger volume fraction of high-angle grain boundaries could more effectively hinder fatigue crack propagation. Based on these facts, the fatigue life of the specimen with martensite was higher than that of the specimen with granular bainite.展开更多
The two-pass isothermal hot compression method was used to study the effect of different thermal deformation conditions on static recrystallization behavior in Ni-Cr-Mo series SA508Gr.4N low alloy steel with interval ...The two-pass isothermal hot compression method was used to study the effect of different thermal deformation conditions on static recrystallization behavior in Ni-Cr-Mo series SA508Gr.4N low alloy steel with interval holding time ranging from 1 to 300 s,temperature ranging from 950 to 1150℃,strain rate ranging from 0.01 to 1 s^(-1),true strains ranging from 0.1 to 0.2,and initial austenite grain size ranging from 175 to 552μm.It can be concluded that the static recrystallization volume fraction gradually increases with the increase in the deformation temperature,strain rate,strain and pass interval,and the decrease in the initial grain size,which is mainly due to the increase in the deformation energy storage and dislocations.Moreover,strain-induced grain boundary migration is the nucleation mechanism for static recrystallization of SA508Gr.4N low alloy steel.Based on the stress-strain curve,the predicted value obtained from the established static recrystallization kinetics model is in good consistence with the experimental value,and the static recrystallization thermal activation energy of SA508Gr.4N steel was calculated as 264,225.99 J/mol.展开更多
基金the Beijing Municipal Natural Science Foundation under No.2162026 and the 863 Program of China under Nos.2008AA031702 and 2012AA03A507 for financial support.
文摘The mechanical and fatigue properties of SA508-Ⅳ steel with martensite and granular bainite, respectively, were studied. The mechanical tests results showed that the ultimate tensile strength and impact toughness of the specimen with martensite were 830 MPa and 158 J, respectively, and those of the specimen with granular bainite were 811 MPa and 115 J, respectively. The former had higher tensile strength and impact toughness than the latter. The impact tests results showed that the former belonged to typical dimple fracture, while the latter belonged to brittle fracture. The fatigue tests results showed that the fatigue life of the specimen with martensite was 2717 cycles, and that of the specimen with granular bainite was 1545 cycles under the strain amplitude of ± 0.45%. The specimen with martensite had fewer crack initiation points, narrower fatigue striations separation, and larger volume fraction of high-angle grain boundaries than the latter. The fewer crack initiation points meant fewer fatigue cracks, the narrower fatigue striations separation meant slower crack propagation rate, and the larger volume fraction of high-angle grain boundaries could more effectively hinder fatigue crack propagation. Based on these facts, the fatigue life of the specimen with martensite was higher than that of the specimen with granular bainite.
基金This work was financially supported by the National Energy Application Technology Research and Engineering Demonstrative Project of China(NY201501)the National High Technology Research and Development Program of China(863 program.No.2012AA03A501)the National Key Research and Development Program of China(2016YFB0300203).
文摘The two-pass isothermal hot compression method was used to study the effect of different thermal deformation conditions on static recrystallization behavior in Ni-Cr-Mo series SA508Gr.4N low alloy steel with interval holding time ranging from 1 to 300 s,temperature ranging from 950 to 1150℃,strain rate ranging from 0.01 to 1 s^(-1),true strains ranging from 0.1 to 0.2,and initial austenite grain size ranging from 175 to 552μm.It can be concluded that the static recrystallization volume fraction gradually increases with the increase in the deformation temperature,strain rate,strain and pass interval,and the decrease in the initial grain size,which is mainly due to the increase in the deformation energy storage and dislocations.Moreover,strain-induced grain boundary migration is the nucleation mechanism for static recrystallization of SA508Gr.4N low alloy steel.Based on the stress-strain curve,the predicted value obtained from the established static recrystallization kinetics model is in good consistence with the experimental value,and the static recrystallization thermal activation energy of SA508Gr.4N steel was calculated as 264,225.99 J/mol.