In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are...In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span>展开更多
Lithium metal anode of lithium batteries,including lithium-ion batteries,has been considered the anode for next-generation batteries with desired high energy densities due to its high theoretical specific capacity(386...Lithium metal anode of lithium batteries,including lithium-ion batteries,has been considered the anode for next-generation batteries with desired high energy densities due to its high theoretical specific capacity(3860 mA h g^(-1))and low standards electrode potential(-3.04 V vs.SHE).However,the highly reactive nature of metallic lithium and its direct contact with the electrolyte could lead to severe chemical reactions,leading to the continuous consumption of the electrolyte and a reduction in the cycle life and Coulombic efficiency.In addition,the solid electrolyte interface formed during battery cycling is mainly inorganic,which is too fragile to withstand the extreme volume change during the plating and stripping of lithium.The uneven flux of lithium ions could lead to excessive lithium deposition at local points,resulting in needle-like lithium dendrites,which could pierce the separator and cause short circuits,battery failure,and safety issues.In the last five years,tremendous efforts have been dedicated to addressing these issues,and the most successful improvements have been related to lithiophilicity optimizations.Thus,this paper comprehensively reviewed the lithiophilicity regulation in lithium metal anode modifications and highlighted the vital effect of lithiophilicity.The remaining challenges faced by the lithiophilicity optimization for lithium metal anodes are discussed with the proposed research directions for overcoming the technical challenges in this subject.展开更多
The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron mic...The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.展开更多
Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat...Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.展开更多
Perovskite materials have made a great progress in terms of the power conversion efficiency(PCE), rising from 3.8% to 25.2%. To obtain pinhole-free, superior crystal, and high-quality perovskite films with less defect...Perovskite materials have made a great progress in terms of the power conversion efficiency(PCE), rising from 3.8% to 25.2%. To obtain pinhole-free, superior crystal, and high-quality perovskite films with less defect, intermediates transformation is important, which has been clearly studied and widely applied.In this review, we systematically summarize the commonly formed intermediates and detailedly analyze their mechanisms from five aspects:(1) Solvent-induced intermediate;(2) HI-induced intermediate;(3)CH3NH2-induced intermediate;(4) MAAc-induced intermediate;(5) other intermediates. Finally, we also provide some prospects on high-quality perovskite fabrication based on using intermediates prudently.展开更多
Nucleate site distribution plays an essential role in nucleate boiling process. In this paper1 it is pointed out that the size and spatial distribution density of nucleate sites presented on real boiling surface can b...Nucleate site distribution plays an essential role in nucleate boiling process. In this paper1 it is pointed out that the size and spatial distribution density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function, and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function. It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.展开更多
In recently published paper by Yang Chunxin[1], I reexamined the paper. On page 128, the paper 'pointed out that the size and spatial distribution density of nucleation sites presented on real boiling surface can ...In recently published paper by Yang Chunxin[1], I reexamined the paper. On page 128, the paper 'pointed out that the size and spatial distribution density of nucleation sites presented on real boiling surface can be described by the normalized fractal distribution function, and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution'. However, the definition on fractal dimension given by Yang[1] is highly questionable, and the results obtained by Yang are contradictory to the basic fractal theory. Here are my comments:展开更多
Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect...Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect can not get rid of the“soft”feature of the structure entirely,resulting in insufficient yield strength.Here,a Co_(x)Cr_(25)(AlFeNi)_(75-x) high-entropy alloy is designed.NiAl phase is used as strengthening component to improve yield strength,while TRIP effect ensures plasticity.Compared with the previous TRIP high-entropy alloy,its yield strength is nearly doubled,and the uniform elongation is more than 55%at room temperature.Furthermore,the corresponding multiphase microstructure evolution and deformation mechanisms are investigated.Significantly,stacking faults andΣ3 twin boundaries are confirmed to be the nucleation sites of HCP phase by HAADF-STEM.Ingenious composition design and proper heat treatment process make it a perfect combination of precipitation strengthening and transformationinduced plasticity,and thus guide design in the high-performance alloy.展开更多
Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In ...Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In the specimen with low fraction of Ni(≤2 wt.%),granular bainite microstructure(i.e.broad surface relief)transformation from intragranular nucleation site was in-situ observed,while,lath bainite microstructure originating from grain boundary of austenite was in-situ observed for specimens with high mass percentage of Ni(≥4 wt.%).With increasing nickel content,the transformation temperature dropped.The prior austenite grain size was initially depressed and subsequently coarsened dramatically with the addition of Ni.The microstructure difference was ascribed to various nucleation sites and growth direction in the matrix.On account of those observations,not only the chemical component,cooling rate and microstructure were systematically correlated,but also the microstructural evolution was definite.展开更多
To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The ...To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The precipitation-time-temperature (PTT) curve of 3 phase was obtained by analyzing the softening kinetics curves. For verifying the type of the precipitates and confirming the validity of the test, the transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersion spectrum (EDS) were em- ployed. Experimental results indicated that the PTT curve for 3 precipitation exhibited a typical "C" shape and the nose points of start and finish precipitation were about 5 s at 920 ℃ and 2 815 s at 940 ℃, respectively. In addition, the nucleation of δ was heterogeneous. The nucleation sites varied with temperatures, including dislocation, grain boundary and stacking fault within γ″ phase. And 3 particles grew quickly at higher temperature with lower density. Moreover, the driving force of nucleation was mainly including chemical free energy, interracial energy and disloca- tion distorted energy. And the dislocation distorted energy could decide the density of nucleation in the strain-induced process.展开更多
文摘In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span>
基金supported by the National Natural Science Foundation of China(52072217,22179071)the Joint Funds of the National Natural Science Foundation of China(U20A20249)the Major Technological Innovation Project of Hubei Science and Technology Department(2019AAA164)。
文摘Lithium metal anode of lithium batteries,including lithium-ion batteries,has been considered the anode for next-generation batteries with desired high energy densities due to its high theoretical specific capacity(3860 mA h g^(-1))and low standards electrode potential(-3.04 V vs.SHE).However,the highly reactive nature of metallic lithium and its direct contact with the electrolyte could lead to severe chemical reactions,leading to the continuous consumption of the electrolyte and a reduction in the cycle life and Coulombic efficiency.In addition,the solid electrolyte interface formed during battery cycling is mainly inorganic,which is too fragile to withstand the extreme volume change during the plating and stripping of lithium.The uneven flux of lithium ions could lead to excessive lithium deposition at local points,resulting in needle-like lithium dendrites,which could pierce the separator and cause short circuits,battery failure,and safety issues.In the last five years,tremendous efforts have been dedicated to addressing these issues,and the most successful improvements have been related to lithiophilicity optimizations.Thus,this paper comprehensively reviewed the lithiophilicity regulation in lithium metal anode modifications and highlighted the vital effect of lithiophilicity.The remaining challenges faced by the lithiophilicity optimization for lithium metal anodes are discussed with the proposed research directions for overcoming the technical challenges in this subject.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.
基金Supported by the National Natural Science Foundation of China (51106119, 81100707), the Fundamental Research Funds for the Central University of China, Doctoral Fund of Ministry of Education (20110201120052) and the National Science and Technology Sur0orting Item (2012BAA08B03).
文摘Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.
基金funded by the National Natural Science Foundation of China (51902148, 61704099, 51801088 and 11664001)the Fundamental Research Funds for the Central Universities (lzujbky-2020-61, lzujbky-2019-88 and lzujbky-2020-kb06)the Special Funding for Open and Shared Large-Scale Instruments and Equipments of Lanzhou University (LZU-GXJJ-2019C023 and LZU-GXJJ-2019C019)。
文摘Perovskite materials have made a great progress in terms of the power conversion efficiency(PCE), rising from 3.8% to 25.2%. To obtain pinhole-free, superior crystal, and high-quality perovskite films with less defect, intermediates transformation is important, which has been clearly studied and widely applied.In this review, we systematically summarize the commonly formed intermediates and detailedly analyze their mechanisms from five aspects:(1) Solvent-induced intermediate;(2) HI-induced intermediate;(3)CH3NH2-induced intermediate;(4) MAAc-induced intermediate;(5) other intermediates. Finally, we also provide some prospects on high-quality perovskite fabrication based on using intermediates prudently.
文摘Nucleate site distribution plays an essential role in nucleate boiling process. In this paper1 it is pointed out that the size and spatial distribution density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function, and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function. It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.
文摘In recently published paper by Yang Chunxin[1], I reexamined the paper. On page 128, the paper 'pointed out that the size and spatial distribution density of nucleation sites presented on real boiling surface can be described by the normalized fractal distribution function, and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution'. However, the definition on fractal dimension given by Yang[1] is highly questionable, and the results obtained by Yang are contradictory to the basic fractal theory. Here are my comments:
基金supported by the Fundamental Research Funds for the Central Universities(N2009007 and N150902001)Foundation of Liaoning Educational Committee for key laboratory(LZ2015042)National Natural Science Foundation of China(21978045)。
文摘Transformation-induced plasticity(TRIP)endows material with continuous work hardening ability,which is considered as a powerful weapon to break the strength-ductility tradeoff.However,FCC based alloys with TRIP effect can not get rid of the“soft”feature of the structure entirely,resulting in insufficient yield strength.Here,a Co_(x)Cr_(25)(AlFeNi)_(75-x) high-entropy alloy is designed.NiAl phase is used as strengthening component to improve yield strength,while TRIP effect ensures plasticity.Compared with the previous TRIP high-entropy alloy,its yield strength is nearly doubled,and the uniform elongation is more than 55%at room temperature.Furthermore,the corresponding multiphase microstructure evolution and deformation mechanisms are investigated.Significantly,stacking faults andΣ3 twin boundaries are confirmed to be the nucleation sites of HCP phase by HAADF-STEM.Ingenious composition design and proper heat treatment process make it a perfect combination of precipitation strengthening and transformationinduced plasticity,and thus guide design in the high-performance alloy.
基金financially supported by National Natural Science Foundation of China (No.51675255)Pre-research of National Basic Research Program of China(2014CB660810)the Rose Willow Outstanding Individual Programs of Lanzhou University of Technology(J201203)
文摘Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In the specimen with low fraction of Ni(≤2 wt.%),granular bainite microstructure(i.e.broad surface relief)transformation from intragranular nucleation site was in-situ observed,while,lath bainite microstructure originating from grain boundary of austenite was in-situ observed for specimens with high mass percentage of Ni(≥4 wt.%).With increasing nickel content,the transformation temperature dropped.The prior austenite grain size was initially depressed and subsequently coarsened dramatically with the addition of Ni.The microstructure difference was ascribed to various nucleation sites and growth direction in the matrix.On account of those observations,not only the chemical component,cooling rate and microstructure were systematically correlated,but also the microstructural evolution was definite.
文摘To study the precipitation dynamics of 3 phase in Inconel 718 alloy, two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875 to 975 ℃. The precipitation-time-temperature (PTT) curve of 3 phase was obtained by analyzing the softening kinetics curves. For verifying the type of the precipitates and confirming the validity of the test, the transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy dispersion spectrum (EDS) were em- ployed. Experimental results indicated that the PTT curve for 3 precipitation exhibited a typical "C" shape and the nose points of start and finish precipitation were about 5 s at 920 ℃ and 2 815 s at 940 ℃, respectively. In addition, the nucleation of δ was heterogeneous. The nucleation sites varied with temperatures, including dislocation, grain boundary and stacking fault within γ″ phase. And 3 particles grew quickly at higher temperature with lower density. Moreover, the driving force of nucleation was mainly including chemical free energy, interracial energy and disloca- tion distorted energy. And the dislocation distorted energy could decide the density of nucleation in the strain-induced process.