To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input...To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.展开更多
Cognitive Radio(CR) is a promising technique for the next generation mobile communi-cation system for its capability to solve the conflicts between the scarcity and underutilization of spectrum.In this paper,aiming at...Cognitive Radio(CR) is a promising technique for the next generation mobile communi-cation system for its capability to solve the conflicts between the scarcity and underutilization of spectrum.In this paper,aiming at maximizing the system capacity of a multi-antenna CR system on the premise that avoid interference to the primary system in the same band simultaneously,a resource allocation method which is able to avoid interference between PRimary(PR) and CR users by pro-jecting the transmit signals of CR users on the null space of the PR users' channels is proposed.CR users with better channel condition are selected,and the interference from CR system to PR users can be removed completely by projecting the transmit signals of CR system on the null-space of PR users' channels.Parallel sub-channels are constructed for CR users through Singular Value Decomposition(SVD).At last,waterfilling is also adopted to increase the CR users' capacity.Simulation result demonstrates that compared with existing methods,our method can improve the achievable sum rate of CR users as well as reduce the outage probability of PR users.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived...In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived and some properties are discussed. Spherical symmetric solutions for the motion are illustrated and some interesting physical phenomena are discovered. The equations of the null membranes are derived and the exact solutions are also given. Spherical symmetric solutions for null membranes are just the two horizons of Reissner-NordstrSm space-time.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method...A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method. The called "step strategy" can be modeled by means of the reaction null space method that introduced earlier to tackle dynamic interaction problems of free-floating robots, or moving base robots in general. 6-DOF biped robot model simulations are used to confirm the validity.展开更多
This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provid...This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provides the stability analysis of the converging process by investigating the relationship between single agents, and the analysis result is proved by using the Lyapunov theory. Finally, the simulation results in two-dimensional space have confirmed the obtained theoretical results.展开更多
A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe compli...A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.展开更多
This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That ...This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That is, use a invertible matrix P to let AP = (B,O), O is zero matrix with n-r columns, r and n is rank and column number of A, so the P's right n-r columns is just the basis of the null space of the matrix A. On the basis of the theorem, lots of problems of linear algebra can be resolved and lots of theorems can be proofed by elementary column operations. Perhaps the textbooks used in universities will have a lot of change with the result of the paper. This result is first found by author in 2010.12.8 in http://www.paper.edu.cn/index.php/default/releasepaper/content/201012-232, but is not formal published.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimate...The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.展开更多
基金Supported by the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)
文摘To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.
文摘Cognitive Radio(CR) is a promising technique for the next generation mobile communi-cation system for its capability to solve the conflicts between the scarcity and underutilization of spectrum.In this paper,aiming at maximizing the system capacity of a multi-antenna CR system on the premise that avoid interference to the primary system in the same band simultaneously,a resource allocation method which is able to avoid interference between PRimary(PR) and CR users by pro-jecting the transmit signals of CR users on the null space of the PR users' channels is proposed.CR users with better channel condition are selected,and the interference from CR system to PR users can be removed completely by projecting the transmit signals of CR system on the null-space of PR users' channels.Parallel sub-channels are constructed for CR users through Singular Value Decomposition(SVD).At last,waterfilling is also adopted to increase the CR users' capacity.Simulation result demonstrates that compared with existing methods,our method can improve the achievable sum rate of CR users as well as reduce the outage probability of PR users.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘In this article, we concern the motion of relativistic membranes and null mem- branes in the Reissner-Nordstrom space-time. The equation of relativistic membranes moving in the Reissner-Nordstrom space-time is derived and some properties are discussed. Spherical symmetric solutions for the motion are illustrated and some interesting physical phenomena are discovered. The equations of the null membranes are derived and the exact solutions are also given. Spherical symmetric solutions for null membranes are just the two horizons of Reissner-NordstrSm space-time.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (No.50675016)the Science and Technology Innovation Fund for the Doctor (No.48030)
文摘A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method. The called "step strategy" can be modeled by means of the reaction null space method that introduced earlier to tackle dynamic interaction problems of free-floating robots, or moving base robots in general. 6-DOF biped robot model simulations are used to confirm the validity.
文摘This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provides the stability analysis of the converging process by investigating the relationship between single agents, and the analysis result is proved by using the Lyapunov theory. Finally, the simulation results in two-dimensional space have confirmed the obtained theoretical results.
文摘A novel approach to design Internal Model Controller(IMC)is proposed in this paper directly from measuredinput and output plant data,which are assumed to becontaminated by measurement noise.In order to avoidthe complicated structure-identification problem inmost cases,two Finite Impulse Response(FIR)modelsare taken to represent the plant model and the internalmodel controller respectively.Taking account of mea-surement noise both in the plant input and its output,anESD based Total Least Squares(TLS)solution is appliedfor the unbiased identification of the plant model and itsinverse model,the latter constitutes the internal modelcontroller according to the principle that the internalmodel controller approximates the inverse dynamics ofthe plant model.Simulations are given for a testifica-tion.
文摘This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That is, use a invertible matrix P to let AP = (B,O), O is zero matrix with n-r columns, r and n is rank and column number of A, so the P's right n-r columns is just the basis of the null space of the matrix A. On the basis of the theorem, lots of problems of linear algebra can be resolved and lots of theorems can be proofed by elementary column operations. Perhaps the textbooks used in universities will have a lot of change with the result of the paper. This result is first found by author in 2010.12.8 in http://www.paper.edu.cn/index.php/default/releasepaper/content/201012-232, but is not formal published.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
文摘The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.