期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
结合零空间法和F-LDA的人脸识别算法 被引量:2
1
作者 王增锋 王汇源 冷严 《计算机应用》 CSCD 北大核心 2005年第11期2586-2588,共3页
线性判别分析(LDA)是一种常用的线性特征提取方法。传统LDA应用于人脸识别时主要存在两个问题:1)小样本问题,即由于训练样本不足引起矩阵奇异;2)优化准则函数并不直接与识别率相关。提出了一种新的能同时解决以上两个问题的基于LDA的人... 线性判别分析(LDA)是一种常用的线性特征提取方法。传统LDA应用于人脸识别时主要存在两个问题:1)小样本问题,即由于训练样本不足引起矩阵奇异;2)优化准则函数并不直接与识别率相关。提出了一种新的能同时解决以上两个问题的基于LDA的人脸识别算法。首先,通过重新定义样本的类内散布矩阵和类间散布矩阵,提出了一种新的零空间法。然后把这种新的零空间法与F-LDA(Fractional LDA)算法相结合,得到一种对人脸识别更有效的特征提取方法。实验结果表明,这种新算法具有较高的识别率。 展开更多
关键词 线性判别分析 零空间法 F—lda(fractional—lda)
下载PDF
基于离散平稳小波分解和递归零空间LDA算法的SELDI蛋白质谱特征选择
2
作者 祝磊 王尧佳 +3 位作者 韩斌 厉力华 柯激情 孟旭莉 《航天医学与医学工程》 CAS CSCD 北大核心 2012年第4期260-265,共6页
目的针对如何筛选与肿瘤相关的蛋白位点问题,提出一种基于平稳小波变换与递归零空间LDA算法相结合的特征选择方法。方法首先对样本质谱数据进行平稳小波变换;接着基于递归框架调用零空间LDA算法,挑选出最具判别意义的小波系数特征;然后... 目的针对如何筛选与肿瘤相关的蛋白位点问题,提出一种基于平稳小波变换与递归零空间LDA算法相结合的特征选择方法。方法首先对样本质谱数据进行平稳小波变换;接着基于递归框架调用零空间LDA算法,挑选出最具判别意义的小波系数特征;然后经平稳小波逆变换,将挑选出的小波系数特征对应回原始蛋白质谱数据中,获得与肿瘤判别相关的蛋白位点。最后,运用SVM分类器估算位点的分类性能。结果在卵巢癌公共数据集OC-WCX2b和浙江省肿瘤医院乳腺癌数据集BC-WCX2a上分别挑选出与肿瘤判别相关的6个和2个蛋白位点。结论本文提出的算法能够有效提取出具有较好判别效果的蛋白质谱位点,有助于癌症的辅助诊断。 展开更多
关键词 蛋白质质谱 特征选择 离散平稳小波变换 零空间lda
下载PDF
基于递归零空间线性判别分析算法的蛋白质质谱数据特征选择 被引量:3
3
作者 王尧佳 祝磊 +3 位作者 韩斌 厉力华 郑智国 牟瀚舟 《航天医学与医学工程》 CAS CSCD 北大核心 2010年第5期324-328,共5页
目的针对蛋白质质谱数据,采用一种新的基于特征选择的算法提取判别特征,提高癌症辅助诊断的准确率。方法将小波特征与递归零空间线性判别分析(LDA)特征选择算法相结合,首先对数据进行多分辨率的小波分解,提取样本细节特征;接着运用t-tes... 目的针对蛋白质质谱数据,采用一种新的基于特征选择的算法提取判别特征,提高癌症辅助诊断的准确率。方法将小波特征与递归零空间线性判别分析(LDA)特征选择算法相结合,首先对数据进行多分辨率的小波分解,提取样本细节特征;接着运用t-test进行筛选,初步降低数据的特征维数;然后递归调用零空间LDA算法,筛选出最具判别意义的蛋白位点;最后采用支持向量机(SVM)分类器估算算法性能。采用十折交叉验证进行测试。结果在公共数据卵巢癌OC-WCX2a上的分类率达到98.3%。在浙江省肿瘤医院提供的临床乳腺癌BC-WCX2a数据上分类率为91.45%,敏感性为97.2%。同时,该算法有效地降低了所选特征间的相关性。结论本算法可充分提取蛋白质质谱数据中的判别特征,从而更有利于癌症的辅助诊断。 展开更多
关键词 癌症分类 蛋白质质谱 递归零空间线性判别分析 特征选择
下载PDF
基于对称线性判别分析算法的人脸识别 被引量:4
4
作者 王伟 张明 《计算机应用》 CSCD 北大核心 2009年第12期3352-3353,3356,共3页
小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在... 小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在ORL和Yale标准人脸库上的实验结果表明,人脸识别效果优于传统LDA方法、独立成分分析(ICA)方法以及二维对称主成分分析(2DSPCA)方法。 展开更多
关键词 线性判别分析 小样本问题 镜像图像 零空间 类间离散度 类内离散度
下载PDF
基于DCT的改进零空间人脸识别算法
5
作者 赵传强 王汇源 吴晓娟 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1708-1712,共5页
线性判别分析(LDA)是一种较为普遍的线性特征提取方法,它的主要缺点是在应用时经常遇到小样本问题,同时其准则函数并不与识别率直接相关。该文提出一种基于DCT的改进零空间LDA方法,能够解决以上两个问题。首先,通过使用DCT代替"像... 线性判别分析(LDA)是一种较为普遍的线性特征提取方法,它的主要缺点是在应用时经常遇到小样本问题,同时其准则函数并不与识别率直接相关。该文提出一种基于DCT的改进零空间LDA方法,能够解决以上两个问题。首先,通过使用DCT代替"像素聚类"并重新定义类间散布矩阵,得到一种新的零空间法。然后将这种方法与F-LDA结合起来得到一种新的对人脸识别更有效的特征提取方法,实验证明这种方法能得到较好的识别率。 展开更多
关键词 人脸识别 线性判别分析 DCT 零空间 F-lda
下载PDF
基于改进零空间法的人脸识别研究 被引量:7
6
作者 李进 罗义平 +1 位作者 刘海华 高智勇 《计算机工程》 CAS CSCD 北大核心 2009年第9期198-200,共3页
针对传统线性判别分析中存在的问题,提出一种基于改进零空间法的人脸识别方法,利用奇异向量的稳定性对零空间上的类间散度矩阵投影进行奇异值分解,并对奇异值进行尺度化处理。在ORL和Yale人脸库中对该方法进行性能测试,实验结果表明,该... 针对传统线性判别分析中存在的问题,提出一种基于改进零空间法的人脸识别方法,利用奇异向量的稳定性对零空间上的类间散度矩阵投影进行奇异值分解,并对奇异值进行尺度化处理。在ORL和Yale人脸库中对该方法进行性能测试,实验结果表明,该方法是有效的,且具有较高的识别率。 展开更多
关键词 线性判别分析 人脸识别 小样本问题 零空间 奇异值分解
下载PDF
基于线性判别分析的加权零空间算法及在人脸识别中的应用 被引量:7
7
作者 张玉华 王欣 《山东大学学报(工学版)》 CAS 北大核心 2009年第6期31-34,共4页
线性判别分析(LDA)用于人脸识别时,存在因训练样本不足引起类内散布矩阵奇异的小样本问题.基于LDA的传统零空间方法首先去掉总体散布矩阵的零空间进行降维,可以避免小样本问题.提出了一种加权零空间特征提取方法,并对加权系数进行了讨论... 线性判别分析(LDA)用于人脸识别时,存在因训练样本不足引起类内散布矩阵奇异的小样本问题.基于LDA的传统零空间方法首先去掉总体散布矩阵的零空间进行降维,可以避免小样本问题.提出了一种加权零空间特征提取方法,并对加权系数进行了讨论.在人脸数据库上的实验结果验证了其有效性. 展开更多
关键词 人脸识别 零空间 线性判别分析(lda)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部