Let p be a prime, n be any positiv e integer, α(n,p) denotes the power of p in the factorization of n! . In this paper, we give an exact computing formula of the mean value ∑ n<Nα(n,p).
The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg-Barnett formalism.Then,two nonclassical features,i.e.,squeezing in the numb...The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg-Barnett formalism.Then,two nonclassical features,i.e.,squeezing in the number and phase operators,as well as the number-phase Wigner function of the generalized squeezed states are investigated.Due to some actual physical situations,the present approach is applied to two classes of generalized squeezed states:solvable quantum systems with discrete spectra and nonlinear squeezed states with particular nonlinear functions.Finally,the time evolution of the nonclassical properties of the considered systems has been numerically investigated.展开更多
In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and...In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and give some correlation theorem. It is shown that <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically pre-Cauchy if and only if <img src="Edit_0f9eaa1e-440b-4bac-8bae-c50bb5e5c244.bmp" alt="" /> <em>D </em>(<em>x<sub>ijk</sub></em>, <em>x<sub>pqr</sub></em>) ≥ <em>ε</em>, <em>i</em> ≤ <em>m</em>,<em> j </em>≤ <em>n</em>, <em>t </em>≤ <em>k</em>}| ≥ <em>δ</em>} ∈<em>I</em>. At the same time, we have proved <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically convergent to <em>x</em><sub>0</sub> if and only if <img src="Edit_343f4dfc-82c3-4985-aebc-95c52795bb2f.bmp" alt="" />. Also, some properties of these new sequence spaces are investigated.展开更多
In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce...In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.展开更多
In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
Measurement of the average aggregate number of coaggregates(N_co)and evaluation Of the number of coaggregates([CoAg])in the region of increasing degree of aggregation shows that only N_co increases linearly with the c...Measurement of the average aggregate number of coaggregates(N_co)and evaluation Of the number of coaggregates([CoAg])in the region of increasing degree of aggregation shows that only N_co increases linearly with the concentration of the target molecules CE-In and BL-ol.展开更多
One of the most important activities in data science is defining a membership function in fuzzy system. Although there are few ways to describe membership function like artificial neural networks, genetic algorithms e...One of the most important activities in data science is defining a membership function in fuzzy system. Although there are few ways to describe membership function like artificial neural networks, genetic algorithms etc.;they are very complex and time consuming. On the other hand, the presence of outlier in a data set produces deceptive results in the modeling. So it is important to detect and eliminate them to prevent their negative effect on the modeling. This paper describes a new and simple way of constructing fuzzy membership function by using five-number summary of a data set. Five states membership function can be created in this new method. At the same time, if there is any outlier in the data set, it can be detected with the help of this method. Usually box plot is used to identify the outliers of a data set. So along with the new approach, the box plot has also been drawn so that it is understood that the results obtained in the new method are accurate. Several real life examples and their analysis have been discussed with graph to demonstrate the potential of the proposed method. The results obtained show that the proposed method has given good results. In the case of outlier, the proposed method and the box plot method have shown similar results. Primary advantage of this new procedure is that it is not as expensive as neural networks, and genetic algorithms.展开更多
For decades, Lychrel numbers have been studied on many bases. Their existence has been proven in base 2, 11 or 17. This paper presents a probabilistic proof of the existence of Lychrel number in base 10 and provides s...For decades, Lychrel numbers have been studied on many bases. Their existence has been proven in base 2, 11 or 17. This paper presents a probabilistic proof of the existence of Lychrel number in base 10 and provides some properties which enable a mathematical extraction of new Lychrel numbers from existing ones. This probabilistic approach has the advantage of being extendable to other bases. The results show that palindromes can also be Lychrel numbers.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on...We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.展开更多
The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new ide...The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new identities associated with the Bernoulli and Euler numbers, the central factorial numbers and the Stirling numbers. We also give some remarks and comments on these analytic functions, which are related to the generating functions for the special numbers.展开更多
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they sol...In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.展开更多
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ...Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.展开更多
With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamilt...With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.展开更多
文摘Let p be a prime, n be any positiv e integer, α(n,p) denotes the power of p in the factorization of n! . In this paper, we give an exact computing formula of the mean value ∑ n<Nα(n,p).
文摘The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg-Barnett formalism.Then,two nonclassical features,i.e.,squeezing in the number and phase operators,as well as the number-phase Wigner function of the generalized squeezed states are investigated.Due to some actual physical situations,the present approach is applied to two classes of generalized squeezed states:solvable quantum systems with discrete spectra and nonlinear squeezed states with particular nonlinear functions.Finally,the time evolution of the nonclassical properties of the considered systems has been numerically investigated.
文摘In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and give some correlation theorem. It is shown that <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically pre-Cauchy if and only if <img src="Edit_0f9eaa1e-440b-4bac-8bae-c50bb5e5c244.bmp" alt="" /> <em>D </em>(<em>x<sub>ijk</sub></em>, <em>x<sub>pqr</sub></em>) ≥ <em>ε</em>, <em>i</em> ≤ <em>m</em>,<em> j </em>≤ <em>n</em>, <em>t </em>≤ <em>k</em>}| ≥ <em>δ</em>} ∈<em>I</em>. At the same time, we have proved <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically convergent to <em>x</em><sub>0</sub> if and only if <img src="Edit_343f4dfc-82c3-4985-aebc-95c52795bb2f.bmp" alt="" />. Also, some properties of these new sequence spaces are investigated.
文摘In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.
文摘In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
文摘Measurement of the average aggregate number of coaggregates(N_co)and evaluation Of the number of coaggregates([CoAg])in the region of increasing degree of aggregation shows that only N_co increases linearly with the concentration of the target molecules CE-In and BL-ol.
文摘One of the most important activities in data science is defining a membership function in fuzzy system. Although there are few ways to describe membership function like artificial neural networks, genetic algorithms etc.;they are very complex and time consuming. On the other hand, the presence of outlier in a data set produces deceptive results in the modeling. So it is important to detect and eliminate them to prevent their negative effect on the modeling. This paper describes a new and simple way of constructing fuzzy membership function by using five-number summary of a data set. Five states membership function can be created in this new method. At the same time, if there is any outlier in the data set, it can be detected with the help of this method. Usually box plot is used to identify the outliers of a data set. So along with the new approach, the box plot has also been drawn so that it is understood that the results obtained in the new method are accurate. Several real life examples and their analysis have been discussed with graph to demonstrate the potential of the proposed method. The results obtained show that the proposed method has given good results. In the case of outlier, the proposed method and the box plot method have shown similar results. Primary advantage of this new procedure is that it is not as expensive as neural networks, and genetic algorithms.
文摘For decades, Lychrel numbers have been studied on many bases. Their existence has been proven in base 2, 11 or 17. This paper presents a probabilistic proof of the existence of Lychrel number in base 10 and provides some properties which enable a mathematical extraction of new Lychrel numbers from existing ones. This probabilistic approach has the advantage of being extendable to other bases. The results show that palindromes can also be Lychrel numbers.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.
文摘We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.
文摘The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new identities associated with the Bernoulli and Euler numbers, the central factorial numbers and the Stirling numbers. We also give some remarks and comments on these analytic functions, which are related to the generating functions for the special numbers.
文摘In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
基金Project supported by the National Natural Science Foundation of China (Grant No.1057117), and the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04).
文摘Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.
文摘With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.