期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Study of the features of outburst caused by rock cross-cut coal uncovering and the law of gas dilatation energy release 被引量:6
1
作者 Yu Baohai Su Chengxiang Wang Deming 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期453-458,共6页
To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ... To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst. 展开更多
关键词 Rock cross-cut coal uncovering Gas dilatation energy Numerical calculation Coal and gas outburst
下载PDF
Assessment of wind energy potential in China 被引量:5
2
作者 Zhu Rong Zhang De Wang Yuedong Xing Xuhuang Li Zechun 《Engineering Sciences》 EI 2009年第2期18-26,31,共10页
China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit... China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several activities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment(SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future. 展开更多
关键词 wind arias meso-scale numerical model numerical simulation for wind energy resource assessment wind energy potential area for wind energy potential wind energy availability
下载PDF
Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide 被引量:5
3
作者 Zhenhao Xi Jie Chen +2 位作者 Tao Liu Ling Zhao Lih-Sheng Turng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期180-189,共10页
Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blo... Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D. 展开更多
关键词 Microcellular injection molding Isotactic polypropylene/nano-calcium carbonate Cell morphology Nucleation activation energy Numerical simulation
下载PDF
Numerical Simulation of Multi-Directional Random Wave Transformation in a Yacht Port 被引量:3
4
作者 JI Qiaoling DONG Sheng +1 位作者 ZHAO Xizeng ZHANG Guowei 《Journal of Ocean University of China》 SCIE CAS 2012年第3期315-322,共8页
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break... This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor. 展开更多
关键词 random wave diffraction energy balance equation numerical simulation yacht port
下载PDF
Numerical Investigation of Flow Motion and Performance of A Horizontal Axis Tidal Turbine Subjected to A Steady Current 被引量:8
5
作者 李林娟 郑金海 +2 位作者 彭于轩 张继生 吴修广 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期209-222,共14页
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical... Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved. 展开更多
关键词 horizontal axis tidal turbine numerical simulation turbine performance flow motion steady current marine renewable energy
下载PDF
THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM
6
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期857-881,共25页
Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploi... Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.The upwind finite difference schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set.Some techniques,such as change of variables,calculus of variations, multiplicative commutation rule of difference operators,decomposition of high order difference operators and prior estimates,are adopted.The estimates in l~2 norm are derived to determine the error in the approximate solution.This method was already applied to the numerical simulation of migration-accumulation of oil resources. 展开更多
关键词 multilayer coupled system moving boundary values upwind finite difference method CONVERGENCE numerical simulation of energy sources
下载PDF
Modified characteristic finite difference fractional step method for moving boundary value problem of nonlinear percolation system
7
作者 袁益让 李长峰 +1 位作者 孙同军 刘允欣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期417-436,共20页
A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium w... A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section. 展开更多
关键词 multilayer nonlinear percolation system moving boundary values modified characteristic fractional finite difference optimal order convergence analysis numerical simulation of energy source
下载PDF
Application of Numerical Simulation Method to Predict the Performance of Wave Energy Device with Impulse Turbine
8
作者 Ajit Thakker Thirumalisai Dhanasekaran +4 位作者 Hammad Khaleeq Zia Usmani Ali Ansari Manabu Takao Toshiaki Setoguchi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第1期38-43,共6页
This paper presents the work carried out to predict the behavior of a 0.6m impulse turbine with fixed guide vanes with 0.6hub-to-tip(H/T) ratio under real sea conditions.In order to predict the true performance of the... This paper presents the work carried out to predict the behavior of a 0.6m impulse turbine with fixed guide vanes with 0.6hub-to-tip(H/T) ratio under real sea conditions.In order to predict the true performance of the actual Oscillating Water Column(OWC),the numerical technique has been fine tuned by incorporating the compressibility effect.Water surface elevation verses time history based on Pierson Moskowitz Spectra was used as the input data,Standard numerical techniques were employed to solve the non-linear behavior of the sea waves.The effect due to ompressibility inside the air chamber and turbine performance under unsteady and irregular flow condition has been analyzed numerically,Considering the quasi-steady assumptions unidirectional steady flow experimental data was used to simulate the turbine characteristics under irregular unsteady flow conditions.The results show that the performance of this type of turbine is quite stable and efficiency of air chamber and the mean conversion efficiency is reduced around 8% and 5% respectively,due to compressibility inside air chamber. 展开更多
关键词 wave energy impulse turbine numerical simulation irregular.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部