As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid...One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.展开更多
Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely use...As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.展开更多
The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic sheari...The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.展开更多
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic c...A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.展开更多
Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are ...Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.展开更多
A stuck drill string results in a major non-productive cost in extended reach drilling engineering. The first step is to determine the depth at which the sticking has occurred. Methods of measurement have been proved ...A stuck drill string results in a major non-productive cost in extended reach drilling engineering. The first step is to determine the depth at which the sticking has occurred. Methods of measurement have been proved useful for determining the stuck points, but these operations take considerable time. As a result of the limitation with the current operational practices, calculation methods are still preferred to estimate the stuck point depth. Current analytical methods do not consider friction and are only valid for vertical rather than extended reach wells. The numerical method is established to take full account of down hole friction, tool joint, upset end of drill pipe, combination drill strings and tubular materials so that it is valid to determine the stuck point in extended reach wells. The pull test, torsion test and combined test of rotation and pulling can be used to determine the stuck point. The results show that down hole friction, tool joint, upset end of drill pipe, tubular sizes and materials have significant effects on the pull length and/or the twist angle of the stuck drill string.展开更多
This study first reviews the numerical manifold method(NMM)which possesses some advantages over the traditional limit equilibrium methods(LEMs)in calculating the factors of safety(Fs)of the slopes.Then,with regard to ...This study first reviews the numerical manifold method(NMM)which possesses some advantages over the traditional limit equilibrium methods(LEMs)in calculating the factors of safety(Fs)of the slopes.Then,with regard to a trial slip surface(TSS),associated stress fields reproduced by NMM as well as the enhanced limit equilibrium method are combined to compute Fs.In order to search for the potential critical slip surface(CSS),the MAX-MIN ant colony optimization algorithm(MMACOA),one of the best performing algorithms for some optimization problems,is adopted.Procedures to obtain Fs in conjunction with the potential CSS are described.Finally,the proposed numerical model and traditional methods are compared with stability analysis of three typical slopes.The numerical results show that Fs and CSSs of the slopes can be accurately calculated with the proposed model.展开更多
This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the reg...This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.展开更多
In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic co...In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we ...Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.展开更多
The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element...The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.展开更多
Projection-based embedded discrete fracture model(pEDFM)is an effective numerical model to handle the flow in fractured reservoirs,with high efficiency and strong generalization of flow models.However,this paper point...Projection-based embedded discrete fracture model(pEDFM)is an effective numerical model to handle the flow in fractured reservoirs,with high efficiency and strong generalization of flow models.However,this paper points out that pEDFM fails to handle flow barriers in most cases,and identifies the physical projection configuration of fractures is a key step in pEDFM.This paper presents and proves the equivalence theorem,which explains the geometric nature of physical projection configurations of fractures,that is,the projection configuration of a fracture being physical is equivalent to it being topologically homeomorphic to the fracture,by analyzing the essence of pEDFM.Physical projection configurations of fractures may be rigorously established based on this theorem,allowing pEDFM to obtain physical numerical results for many flow models,particularly those with flow barriers.Furthermore,a natural idea emerges of employing flow barriers to flexibly‘cut’the formation to quickly handle the flow problems in the formation with complex geological conditions,and several numerical examples are implemented to test this idea and application of the improved pEDFM.展开更多
Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the t...Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.展开更多
Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applie...Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.展开更多
A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the genera...A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.展开更多
A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large c...A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large convergence domain is given. Finally, a numerical example is given.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
文摘One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
基金supported by National Key Basic Research Program (973 Program, Grant No. 2011CB706804)National Natural Science Foundation of China (Grant No. 50805093)Science & Technology Commission of Shanghai Municipality, China (Grant No. 09QH1401500)
文摘As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.
基金supported by Laboratory Directed Research and Development(LDRD)funding from Berkeley Labsupported by Open Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017004)。
文摘The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.
文摘A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
基金the Research and initiative center COVID-19-DES-2020-65,Prince Sultan University.
文摘Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.
基金support from the national projects(Grant No.:2011ZX05009-005and2010CB226703)
文摘A stuck drill string results in a major non-productive cost in extended reach drilling engineering. The first step is to determine the depth at which the sticking has occurred. Methods of measurement have been proved useful for determining the stuck points, but these operations take considerable time. As a result of the limitation with the current operational practices, calculation methods are still preferred to estimate the stuck point depth. Current analytical methods do not consider friction and are only valid for vertical rather than extended reach wells. The numerical method is established to take full account of down hole friction, tool joint, upset end of drill pipe, combination drill strings and tubular materials so that it is valid to determine the stuck point in extended reach wells. The pull test, torsion test and combined test of rotation and pulling can be used to determine the stuck point. The results show that down hole friction, tool joint, upset end of drill pipe, tubular sizes and materials have significant effects on the pull length and/or the twist angle of the stuck drill string.
基金This study is supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2020327)the National Natural Science Foundation of China(Grant No.51609240).
文摘This study first reviews the numerical manifold method(NMM)which possesses some advantages over the traditional limit equilibrium methods(LEMs)in calculating the factors of safety(Fs)of the slopes.Then,with regard to a trial slip surface(TSS),associated stress fields reproduced by NMM as well as the enhanced limit equilibrium method are combined to compute Fs.In order to search for the potential critical slip surface(CSS),the MAX-MIN ant colony optimization algorithm(MMACOA),one of the best performing algorithms for some optimization problems,is adopted.Procedures to obtain Fs in conjunction with the potential CSS are described.Finally,the proposed numerical model and traditional methods are compared with stability analysis of three typical slopes.The numerical results show that Fs and CSSs of the slopes can be accurately calculated with the proposed model.
基金supported by the National Natural Science Foundation of China (Grant No. 41475021)
文摘This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.
基金Supported by National Key R&D Program of China(Grant No.2019YFB1505301)National Natural Science Foundation of China(Grant No.U1937602)+1 种基金Aeronautical Science Foundation of China(Grant No.201907058001)Open Research Fund of State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2019KF013).
文摘In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2007AA12Z170)the Major Research Plan of the National Natural Science Foundation of China (Grant No 40706058)+1 种基金the Science-Technology Chenguang foundation for Young Scientist of Wuhan,China (Grant No 200850731388)the Canadian Space Agency Government Related Initiatives Program (GRIP) entitled Building Satellite Data into Fisheries and Oceans Operational Systems
文摘Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.
基金supported by National Natural Science Foundation of China (Grant No. 50775044, Grant No. 50975050)Guangdong Provincial and Ministry of Education Industry-University-Research Integration Project of China (Grant No. 2009B090300044)
文摘The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.
基金supported by the National Natural Science Foundation of China(No.52104017)National Key Research and Development Program of China(Grant No.2019YFA0705501)State Center for Research and Development of Oil Shale Exploitation,and Cooperative Innovation Center of Unconventional Oil and Gas(Ministry of Education&Hubei Province),Yangtze University(No.UOG2020-17).
文摘Projection-based embedded discrete fracture model(pEDFM)is an effective numerical model to handle the flow in fractured reservoirs,with high efficiency and strong generalization of flow models.However,this paper points out that pEDFM fails to handle flow barriers in most cases,and identifies the physical projection configuration of fractures is a key step in pEDFM.This paper presents and proves the equivalence theorem,which explains the geometric nature of physical projection configurations of fractures,that is,the projection configuration of a fracture being physical is equivalent to it being topologically homeomorphic to the fracture,by analyzing the essence of pEDFM.Physical projection configurations of fractures may be rigorously established based on this theorem,allowing pEDFM to obtain physical numerical results for many flow models,particularly those with flow barriers.Furthermore,a natural idea emerges of employing flow barriers to flexibly‘cut’the formation to quickly handle the flow problems in the formation with complex geological conditions,and several numerical examples are implemented to test this idea and application of the improved pEDFM.
基金Project(51321065,51479191,11672360)supported by the National Natural Science Foundation of China。
文摘Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.
文摘Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (20090101120057)the Scientific Research Fund of Zhejiang Provincial Education Department (Y200909163)
文摘A complete rock failure process usually involves opening/sliding of preexisting discontinuities as well as frac- turing in intact rock bridges to form persistent failure sur- faces and subsequent motions of the generated rock blocks. The recently developed numerical manifold method (NMM) has potential for modelling such a complete failure process. However, the NMM suffers one limitation, i.e., unexpected material domain area change occurs in rotation modelling. This problem can not be easily solved because the rigid body rotation is not represented explicitly in the NMM. The discontinuous deformation analysis (DDA) is specially de- veloped for modelling discrete block systems. The rotation- induced material area change in the DDA modelling can be avoided conveniently because the rigid body rotation is represented in an explicit form. In this paper, a transition technique is proposed and implemented to convert a NMMmodelling to a DDA modelling so as to simulate a complete rock failure process entirely by means of the two methods, in which the NMM is adopted to model the early fracturing as well as the transition from continua to discontinua, while the DDA is adopted to model the subsequent motion of the generated rock blocks. Such a numerical approach also im- proves the simulation efficiency greatly as compared with a complete NMM modelling approach. The fracturing of a rock slab with pre-existing non-persistent joints located on a slope crest and the induced rockfall process are simulated. The validity of the modelling transition from the NMM to the DDA is verified and the applicability of the proposed nu- merical approach is investigated.
文摘A new provement of the existence and uniqueness about periodic boundary value Duffing equation is established by using global inverse function theorem. An algorithm for solving differential equation that has a large convergence domain is given. Finally, a numerical example is given.