The basic approach to computer analysis of the CICC in superconducting Tokamak HT-7U is given and discussed. We will apply a 1-D mathematical model (Gandalf) to investigate the stability of CICC at real operating mod...The basic approach to computer analysis of the CICC in superconducting Tokamak HT-7U is given and discussed. We will apply a 1-D mathematical model (Gandalf) to investigate the stability of CICC at real operating modes of Tokamak. 1-D model can be directly adopted to follow the evolution of the zone when the energy input is large enough and the coil quenches. In this report, we will analyze the stability of typical CICC (including pure copper) and discuss effect of copper on the stability of CICC.展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
A computer code, ELANEX, including several Homogenous-Equilibrium-Model (HEM) type cavitation models, were developed, to numerically simulate natural cavitation phenomena. The effectiveness of the code was checked b...A computer code, ELANEX, including several Homogenous-Equilibrium-Model (HEM) type cavitation models, were developed, to numerically simulate natural cavitation phenomena. The effectiveness of the code was checked by cavitation flows around the disk and cylinder body for a wide range of different cavitation numbers. Cavity profiles were compared with the analytic solution of disk and empirical formulae fitted from the experiment data, and contrast between different cavitation models were fulfilled as well. The cavity length and maximal cavity diameter were found to agree well with the analytic solutions, and detailed cavity profiles were in accordance with the experimental formula. Comparison with the hemisphere headed cylinder body presented a good agreement of the pressure coefficient with the experiment data. Reasonable drag-force coefficient variation and drag-force reduction effect were obtained.展开更多
The Fokker Planck package which without the relativity effect has been developed in 2002. The package with relativity effect, which induced from Italy, is now developed. It conrains relativity effect, and is bounce a...The Fokker Planck package which without the relativity effect has been developed in 2002. The package with relativity effect, which induced from Italy, is now developed. It conrains relativity effect, and is bounce averaged. It can deal with such as the trapping effect, wave heating, neutral beam injecting, and particle losses. It is very useful for our HL-2A experimental results analysis.展开更多
Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- chan...Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.展开更多
As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulatin...As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulating heat extraction process of working fluid will disturb the equilibrium state of physical and chemical fields inside the reservoir,and involve the mutual coupling of heat transfer,flow,stress,and chemical reaction.Revealing the coupling mechanism of flow and heat transfer inside the reservoir during geothermal exploitation can provide important theoretical support for the efficient exploitation of geothermal resources.This paper reviews the research advances of the multi-field coupling model in the reservoir during geothermal production over the past 40 years.The thrust of this paper is on objective analysis and evaluation of the importance of each coupling process and its influence on reservoir heat extraction performance.Finally,we discuss the existing challenges and perspectives to promote the future development of the geothermal reservoir multi-field coupling model.An accurate understanding of the multi-field coupling mechanism,an efficient cross-scale modeling method,as well as the accurate characterization of reservoir fracture morphology,are crucial for the multi-field coupling model of geothermal production.展开更多
文摘The basic approach to computer analysis of the CICC in superconducting Tokamak HT-7U is given and discussed. We will apply a 1-D mathematical model (Gandalf) to investigate the stability of CICC at real operating modes of Tokamak. 1-D model can be directly adopted to follow the evolution of the zone when the energy input is large enough and the coil quenches. In this report, we will analyze the stability of typical CICC (including pure copper) and discuss effect of copper on the stability of CICC.
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
基金supported by the National Natural Science Foundation of China (Grant No. 10372061)the Doctor Foundation (Grant No. 20030248001)
文摘A computer code, ELANEX, including several Homogenous-Equilibrium-Model (HEM) type cavitation models, were developed, to numerically simulate natural cavitation phenomena. The effectiveness of the code was checked by cavitation flows around the disk and cylinder body for a wide range of different cavitation numbers. Cavity profiles were compared with the analytic solution of disk and empirical formulae fitted from the experiment data, and contrast between different cavitation models were fulfilled as well. The cavity length and maximal cavity diameter were found to agree well with the analytic solutions, and detailed cavity profiles were in accordance with the experimental formula. Comparison with the hemisphere headed cylinder body presented a good agreement of the pressure coefficient with the experiment data. Reasonable drag-force coefficient variation and drag-force reduction effect were obtained.
文摘The Fokker Planck package which without the relativity effect has been developed in 2002. The package with relativity effect, which induced from Italy, is now developed. It conrains relativity effect, and is bounce averaged. It can deal with such as the trapping effect, wave heating, neutral beam injecting, and particle losses. It is very useful for our HL-2A experimental results analysis.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51676055 and 51536001)
文摘Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.
基金the National Natural Science Fund for Major Program of China(Grant No.52192621)the National Natural Science Fund for Major Program of China(Grant No.52192624)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFB1501804)Sichuan Science and Technology Program(2021YJ0389).
文摘As a kind of clean renewable energy,the production and utilization of geothermal resources can make a great contribution to optimizing the energy structure and energy conservation and emission reduction.The circulating heat extraction process of working fluid will disturb the equilibrium state of physical and chemical fields inside the reservoir,and involve the mutual coupling of heat transfer,flow,stress,and chemical reaction.Revealing the coupling mechanism of flow and heat transfer inside the reservoir during geothermal exploitation can provide important theoretical support for the efficient exploitation of geothermal resources.This paper reviews the research advances of the multi-field coupling model in the reservoir during geothermal production over the past 40 years.The thrust of this paper is on objective analysis and evaluation of the importance of each coupling process and its influence on reservoir heat extraction performance.Finally,we discuss the existing challenges and perspectives to promote the future development of the geothermal reservoir multi-field coupling model.An accurate understanding of the multi-field coupling mechanism,an efficient cross-scale modeling method,as well as the accurate characterization of reservoir fracture morphology,are crucial for the multi-field coupling model of geothermal production.