期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NUMERICAL ANALYSIS ON THREE-DIMENSIONAL FLOW FIELD OF TURBINE IN TORQUE CONVERTER 被引量:11
1
作者 LIU Yue PAN Yuxue LIU Chunbao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期94-96,共3页
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ... Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data. 展开更多
关键词 Torque converter Turbine flow field numerical analysis
下载PDF
Numerical Analysis of Emergency River Restoration Scheme for Qingping Mega Debris Flow 被引量:2
2
作者 CHEN Ri-dong LIU Xing-nian +1 位作者 HUANG Er GUO Zhi-xue 《Journal of Mountain Science》 SCIE CSCD 2013年第1期130-136,共7页
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu... The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow. 展开更多
关键词 Flash flood Debris flow River restoration numerical analysis Finite element method
下载PDF
Numerical Analysis of Flow Instability in the Water Wall of a Supercritical CFB Boiler with Annular Furnace 被引量:5
3
作者 XIE Beibei YANG Dong +2 位作者 XIE Haiyan NIE Xin LIU Wanyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期372-379,共8页
In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this pap... In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper.The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability.Based on the time-domain method,a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established.To verify the code,calculation results were respectively compared with data of commercial software.According to the comparisons,the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability.Based on the new program,the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method.When 1.2 times heat load disturbance was applied on the loop,results showed that the inlet flow rate,outlet flow rate and wall temperature fluctuated with time eventually remained at constant values,suggesting that the hydrodynamic flow was stable.The results also showed that in the case of considering the heat storage,the flow in the water wall is easier to return to stable state than without considering heat storage. 展开更多
关键词 supercritical CFB with annular furnace heat storage flow instability wall temperature numerical analysis
原文传递
Flow and Heat Transfer Characteristics in Rotating Two-pass Channels Cooled by Superheated Steam 被引量:7
4
作者 WANG Wei GAO Jianmin +1 位作者 XU Liang SHI Xiaojun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期524-532,共9页
In a modern gas turbine,using superheated steam to cool the vane and blade for internal convection cooling is a promising alternative to traditional compressor air.However,further investigations of steam cooling need ... In a modern gas turbine,using superheated steam to cool the vane and blade for internal convection cooling is a promising alternative to traditional compressor air.However,further investigations of steam cooling need to be performed.In this paper,the three-dimensional flow and heat transfer characteristics of steam are numerically investigated in two-pass square channels with 45° ribbed walls under stationary and rotating conditions.The investigated rotation numbers are 0 and 0.24.The simulation is carried out by solving the Reynolds averaged Navier-Stokes equations employing the Reynolds stress turbulence model,especially considering two additional terms for Coriolis and rotational buoyancy forces caused by the rotating effect.For comparison,calculations for the air-cooled channels are done first at a Reynolds number of 25 000 and inlet coolant-to-wall density ratio of 0.13.The results are compared with the experiment data.Then the flow and heat transfer in steam-cooled channels are analyzed under the same operating conditions.The results indicate that the superheated steam has better heat transfer performance than air.Due to the combined effect of rotation,skewed ribs and 180° sharp turn,the secondary flow pattern in steam-cooled rotating two-pass channels is quite complex.This complex secondary flow pattern leads to strong anisotropic turbulence and high level of anisotropy of Reynolds stresses,which have a significant impact on the local heat transfer coefficient distributions. 展开更多
关键词 turbine steam cooling rotation numerical analysis heat transfer secondary flow Reynolds stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部