This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main clas...This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main classes of numerical methods used to invert the Laplace transform. Because the numerical inversion of the Laplace transform is a perturbed problem, rounding errors which are generated in numerical approximations can adversely affect the accurate reconstruction of the inverse transform. This paper demonstrates that working in a multi-precision environment can substantially reduce these errors and the resulting perturbations exist in transforming the data from the s-space into the time domain and in so doing overcome the main drawback of numerically inverting the Laplace transform. Our main finding is that both the Talbot and the accelerated Gaver functionals perform considerably better in a multi-precision environment increasing the advantages of using Laplace transform methods over time-stepping procedures in solving diffusion and more generally parabolic partial differential equations.展开更多
This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical sol...This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.展开更多
In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution o...In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.展开更多
The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus...The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.展开更多
Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all...Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.展开更多
Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a...Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.展开更多
In this article, we have effectively used the Numerical Inversion of Laplace transform to study the time-dependent thin film flow of a second grade fluid flowing down an inclined plane through a porous medium. The sol...In this article, we have effectively used the Numerical Inversion of Laplace transform to study the time-dependent thin film flow of a second grade fluid flowing down an inclined plane through a porous medium. The solution to the governing equation is obtained by using the standard Laplace transform. However, to transform the obtained solutions from Laplace space back to the original space, we have used the Numerical Inversion of Laplace transform. Graphical results have been presented to show the effects of different parameters involved and to show how the fluid flow evolves with time.展开更多
A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Four...A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum展开更多
We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demon...We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demonstrated by solving some differential equations.Also,this technique is combined with the standard Laplace Homotopy Per-turbation Method.The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.展开更多
文摘This paper examines the performance of five algorithms for numerically inverting the Laplace transform, in standard, 16-digit and multi-precision environments. The algorithms are taken from three of the four main classes of numerical methods used to invert the Laplace transform. Because the numerical inversion of the Laplace transform is a perturbed problem, rounding errors which are generated in numerical approximations can adversely affect the accurate reconstruction of the inverse transform. This paper demonstrates that working in a multi-precision environment can substantially reduce these errors and the resulting perturbations exist in transforming the data from the s-space into the time domain and in so doing overcome the main drawback of numerically inverting the Laplace transform. Our main finding is that both the Talbot and the accelerated Gaver functionals perform considerably better in a multi-precision environment increasing the advantages of using Laplace transform methods over time-stepping procedures in solving diffusion and more generally parabolic partial differential equations.
基金the Jiangxi Provincial Natural Scientific Foundation(0211014)Scientific Research Program from Education Office of Jiangxi Province([2005]213)East China Institute of Technology.
文摘This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.
文摘In order to find stable, accurate, and computationally efficient methods for performing the inverse Laplace transform, a new double transformation approach is proposed. To validate and improve the inversion solution obtained using the Gaver-Stehfest algorithm, direct Laplace transforms are taken of the numerically inverted transforms to compare with the original function. The numerical direct Laplace transform is implemented with a composite Simpson’s rule. Challenging numerical examples involving periodic and oscillatory functions, are investigated. The numerical examples illustrate the computational accuracy and efficiency of the direct Laplace transform and its inverse due to increasing the precision level and the number of terms included in the expansion. It is found that the number of expansion terms and the precision level selected must be in a harmonious balance in order for correct and stable results to be obtained.
文摘The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.
基金supported by the National Natural Science Foundation of China(No.61901465,82222032,82172050).
文摘Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.
文摘Given the Laplace transform F(s) of a function f(t), we develop a new algorithm to find on approximation to f(t) by the use of the dassical Jacobi polynomials. The main contribution of our work is the development of a new and very effective method to determine the coefficients in the finite series ex-pansion that approximation f(t) in terms of Jacobi polynomials. Some numerical examples are illustrated.
文摘In this article, we have effectively used the Numerical Inversion of Laplace transform to study the time-dependent thin film flow of a second grade fluid flowing down an inclined plane through a porous medium. The solution to the governing equation is obtained by using the standard Laplace transform. However, to transform the obtained solutions from Laplace space back to the original space, we have used the Numerical Inversion of Laplace transform. Graphical results have been presented to show the effects of different parameters involved and to show how the fluid flow evolves with time.
文摘A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum
文摘We investigate through this research the numerical inversion technique for the Laplace transforms cooperated by the integration Boubaker polynomials operational matrix.The efficiency of the presented approach is demonstrated by solving some differential equations.Also,this technique is combined with the standard Laplace Homotopy Per-turbation Method.The numerical results highlight that there is a very good agreement between the estimated solutions with exact solutions.