期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Numerical investigations on effects of bluff body in flat plate micro thermo photovoltaic combustor with sudden expansion 被引量:1
1
作者 鄂加强 黄海蛟 赵晓欢 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期975-982,共8页
In order to reveal combustion characteristics of H_2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body's blockage ratios on the temper... In order to reveal combustion characteristics of H_2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body's blockage ratios on the temperature field, pressure of the combustor wall, combustion efficiency and blow-off limit were investigated. The numerical results indicate that the sudden expansion plate micro combustor with bluff body could enhance the turbulent disturbance of the mixed gas in the combustion chamber and the combustion condition is improved. Moreover, a low-speed and high temperature recirculation region was formed between the sudden expansion step and the bluff body so that the high and uniform wall temperature(>1000 K) could be gotten. As a result, it could strengthen the mixing process, prolong the residence time of gas, control the flame position effectively and widen the operation range by the synergistic effect of the bluff body and steps. When the blockage ratio ranged from 0.3 to 0.6, it could be found that the bluff body could play a stabilizing effect and expand combustion blow burning limit, and combustion efficiency firstly was increased with the inlet velocity and equivalence ratio, and then was decreased. 展开更多
关键词 micro combustor bluff body sudden expansion numerical investigations
下载PDF
Numerical Investigations of Laminar Air Flow and Heat Transfer Characteristics in a Square Channel Inserted with Discrete X-V Baffles (XVB)
2
作者 Amnart Boonloi Withada Jedsadaratanachai 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期317-336,共20页
Thermal performance enhancement in a square channel heat exchanger(HX)using a passive technique is presented.Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvemen... Thermal performance enhancement in a square channel heat exchanger(HX)using a passive technique is presented.Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvement.The vortex turbulator of interest is discrete X-V baffles(XVB).The discrete XVBs are inserted in the square channel with the main aim of generating vortex flow.The vortex flow generated can support the enhanced convective heat transfer coefficient and also enhance HX performance.Effects of baffle configuration(type A and B),baffle size(w/H=0.05,0.10,0.15 and 0.20),baffle distance(e/H=1,1.5 and 2)and flow direction(±x air flow paths)on fluid flow and thermal topologies are numerically investigated by using a commercial code.As shown by the numerical results,the predicted flow configuration with the discrete XVB insertions,which include impinging and vortex streams,is found through the HX channel.The perturbing thermal boundary layer and greater air blending are also found through the HX channel inserted with the discrete XVB.These mechanisms promote and augment the convection heat transfer coefficient,heat transfer rate and rise thermal potentiality.The maximum Nusselt number of the channel with the baffles inserted is 11.01 times upper than that of the smooth channel,while the greatest thermal performance factor(TPF)is observed to be around 3.45. 展开更多
关键词 Discrete X-V baffles(XVB) passive technique numerical investigation vortex turbulators
下载PDF
Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers 被引量:2
3
作者 LEI CHEN HAN YE +3 位作者 YUMIN LIU DONG WU RUI MA ZHONGYUAN YU 《Photonics Research》 SCIE EI 2017年第4期335-339,共5页
A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metama... A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metamaterials(HMM) consisting of 20-pair alternating vanadium dioxide (VO_2)∕Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm × 220 nm × 200 nm(width × height × length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth(MD) of5.6 d B and insertion loss(IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD > 5 dB and IL < 1.25 dB. Furthermore, we discuss that the tungsten-doped VO_2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level. 展开更多
关键词 numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers HMM mode
原文传递
Numerical investigation of friction-heating-pressurization and its control parameters in the shear band of high-speed landslides
4
作者 ZHAO Nenghao CUI Shenghua LU Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3380-3395,共16页
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat... High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding. 展开更多
关键词 High-speed landslide Shear band Friction-heating-pressurization numerical investigation
下载PDF
Numerical Investigation of the Performance of an Axial-Flow Pump with Tandem Blades 被引量:3
5
作者 余志毅 刘淑艳 王国玉 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期404-408,共5页
The performance characteristics of an axial-flow pump with tandem blades are studied based on the numerical computations. The arrangement of the pump impellers is established through the analysis of velocity triangles... The performance characteristics of an axial-flow pump with tandem blades are studied based on the numerical computations. The arrangement of the pump impellers is established through the analysis of velocity triangles. With the commercial computational fluid dynamics (CFD) software NUMECA, the turbulent flow in the tandem axial-flow pump is simulated in various flow conditions. The detail flow structure in the leading edge region of the rear impeller is described, and the influence of the deflection angle of the rear blade on the head performance is studied. According to the simulation, the performance comparison is made between the tandem axial-flow pump and the conventional two-stage axial-flow pump with a uniform impeller size. Results of the study indicate that the tandem axial-flow pump can work in a wider range with high efficiency. 展开更多
关键词 tandem blades numerical investigation performance characteristics
下载PDF
Numerical investigation of hydrodynamic tractor-retarder assembly under traction work condition 被引量:3
6
作者 闫清东 邹波 魏巍 《Journal of Beijing Institute of Technology》 EI CAS 2011年第4期472-477,共6页
To obtain the performance characteristics of hydrodynamic tractor-retarder assembly under traction work condition,a numerical simulation model of flow channel was established and tetrahedron unstructured grids were ad... To obtain the performance characteristics of hydrodynamic tractor-retarder assembly under traction work condition,a numerical simulation model of flow channel was established and tetrahedron unstructured grids were adopted in the meshing stage.The racing rotating speed of the brake wheels was calculated by computational fluid dynamics(CFD) calculation and interpolation,and then accurate boundary condition was applied to the CFD simulation to study the pressure and velocity distribution of internal flow field in hydrodynamic tractor-retarder assembly.Finally,the original characteristics were calculated by CFD post-processing analysis.Comparison of experimental data and flow field analysis results showed that the calculation tolerance of the torque ratio K and the efficiency η was less than 5%,and the calculation tolerance of the pump torque coefficient λ was less than 10%. 展开更多
关键词 fluid transmission and control hydrodynamic tractor-retarder assembly(HTRA) traction condition numerical investigation
下载PDF
Numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels 被引量:3
7
作者 李健 宁建国 +2 位作者 赵慧 郝莉 王成 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期144-147,共4页
The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism, The numerical results demonstrate that as the radius of the curvatur... The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism, The numerical results demonstrate that as the radius of the curvature decreases, detonation fails near the inner wall due to the strong expansion effect. As the radius of the curvature increases, the detonation front near the inner wall can sustain an underdriven detonation. In the case where deto- nation fails, a transverse detonation downstream forms and re-initiates the quenched detonation as it propagates toward the inner wall. Two kinds of propagation modes exist as the detonation is propagating in the curved channel. One is that the detonation fails first, and then a following transverse detonation initiates the quenched detonation and this process repeats itself. The other one is that without detonation failure and re-initiation, a steady detonation exists which consists of an underdriven detonation front near the inner wall subject to the diffraction and an overdriven detonation near the outer wall subject to the compression. 展开更多
关键词 numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels
下载PDF
Numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor 被引量:1
8
作者 吴彬 林烈 +1 位作者 张秀杰 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第6期565-571,共7页
This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas... This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region. 展开更多
关键词 RE numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor
下载PDF
Numerical Study on Characteristics of Supercavitating Flow Around the Variable-Lateral-Force Cavitator
9
作者 HU Xiao GAO Ye SHI Xiao-tao 《China Ocean Engineering》 SCIE EI CSCD 2017年第1期123-129,共7页
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow ... A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases. 展开更多
关键词 supercavitating flow cavitator drag force lateral forces numerical investigation
下载PDF
NUMERICAL INVESTIGATION OF THE MECHANISM OF ASYMMETRIC VORTEX FLOWS
10
作者 Zhang Wu (Department of Mechanics,Peking University)Luo Shijun (Dept.of Mechanical Engng.,Northwestern Polytech,Univ.,Xian) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第4期311-315,共5页
A robust iterative method suitable for the numerical simulation of high angle-of-attack vortex flows is established based upon the multiple line-vortex model(MLVM).With symmetric or asymmetric positions of sep- aratio... A robust iterative method suitable for the numerical simulation of high angle-of-attack vortex flows is established based upon the multiple line-vortex model(MLVM).With symmetric or asymmetric positions of sep- aration lines given,the first converged solution at an angle of attack as high as 60 degree is obtained by means of the present method.Numerical experiments for a tangent-ogive forebody indicate the viscous onset mechanism of asymmetric vortex flows over a body of revolution at high angles of attack and zero sideslip. 展开更多
关键词 asymmetric vortex flow viscous mechanism multiple line-vortex model numerical investigation
下载PDF
NUMERICAL INVESTIGATION OF THE LIMIT LOADS FOR PRESSURE VESSELS WITH PART-THROUGH SLOTS
11
作者 LIU, YH CEN, ZZ XU, BY 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第3期263-276,共14页
A numerical investigation of the limit loads is carried out for pressure vessels with part-through slots using a general computational method for the limit analysis of 3-D structures. The limit pressures are given for... A numerical investigation of the limit loads is carried out for pressure vessels with part-through slots using a general computational method for the limit analysis of 3-D structures. The limit pressures are given for a comprehensive range of geometric parameters. Some of the calculated results are compared with the results of 3-D elastic-plastic finite element analysis and existing numerical solutions. The effects of various shapes and sizes of part-through slots on the load carrying capacity of cylindrical shells are investigated and evaluated. Two kinds of typical failure modes corresponding to different dimensions of slots are studied. Based on the numerical results, a geometric parameter G which combines the slot dimensions and the cylinder geometry is presented. It reasonably reflects the overall effect of slots on the limit loads of cylinders. An empirical formula for estimating the limit pressures of cylindrical shells with part-through slots is obtained. 展开更多
关键词 LIMIT ANALYSIS PRESSURE VESSELS PART-THRONGH SLOT numerical INVESTIGATION
下载PDF
Numerical Analysis of the Influence of Buoyancy Ratio and Dufour Parameter on Thermosolutal Convection in a Square Salt Gradient Solar Pond
12
作者 Yassmine Rghif Belkacem Zeghmati Fatima Bahraoui 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1319-1329,共11页
Revise the abstract as follows:This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond(SGSP).The absorpti... Revise the abstract as follows:This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond(SGSP).The absorption of solar radiation by the saline water,the heat losses and the wind effects via the SGSP free surface are considered.The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation.These equations are solved using the finite volume method and the Gauss algorithm.Velocity-pressure coupling is implemented through the SIMPLE algorithm.Simulations of the SGSP are performed for three values of buoyancy ratio(N=1,2 and 10),three values of Dufour parameter(Df?0,0.2 and 0.8)and some sample meteorological data(Tangier,Morocco).Results show that the highest dimensionless temperature of the storage zone is found for N=10.In the same zone and for the same value of N,the dimensionless salt concentration decreases very slightly versus time(unlike for N=1 or 2).Moreover,increasing Df from 0 to 0.8 causes a decrease in the dimensionless temperature of the SGSP storage zone and this decrease is more pronounced for N=1 and N=2. 展开更多
关键词 Buoyancy ratio Dufour effect numerical investigation salt gradient solar pond thermosolutal convection
下载PDF
Hydrodynamics numerical investigation of hoistable masts for underwater vehicles
13
作者 Zheng Lijie Hu Gangyi Xu Jian Qiu Lei 《Engineering Sciences》 EI 2011年第1期13-18,共6页
Using the unsteady incompressible Navier-Stokes equation as the governing equation, the large eddy simulation (LES) model is implemented to investigate the shedding of vortices, the flow pattern of turbulence, the uns... Using the unsteady incompressible Navier-Stokes equation as the governing equation, the large eddy simulation (LES) model is implemented to investigate the shedding of vortices, the flow pattern of turbulence, the unsteady pressure fluctuation and the time history of the lift coefficient and drag coefficient of hoistable masts with various mast shapes and various arrangements in this paper. Combining the FFT, combined time-frequency transform and wavelet power spectrum analysis, the characteristics of unsteady pressure can be obtained in both time and frequency domain. It shows that the main frequency of pressure fluctuation is near the frequency of vortex shedding in time domain using the FFT method. It can be inferred from the combined time-frequency transform that the unsteady pressure fluctuation has obviously the peak value and the second peak value in time domain. It could indicate that the fluctuation power varies from the fluctuation frequency through the power spectrum analysis. By the data analysis, it shows that the vortex shedding is the dominant cause of the periodically pressure fluctuation. And the interaction pattern of wake and interplay between wake and the walls of masts under different arrangements are also discussed in this paper. 展开更多
关键词 hoistable mast HYDRODYNAMICS numerical investigation
下载PDF
NUMERICAL INVESTIGATION OF AXIAL FLOW COMPRESSOR CASING TREATMENT
14
作者 Zhuang PingInstitute of Engineering Thermo physics Lu Ya-jun and Cui Ji-ya (Tsui Chihya)Beijing University of Aeronautics & Astronautics 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第4期369-379,共11页
Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary ... Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary singularities and numerical stability. Agreement is attained in qualitative explanations of some, casing treatment test results and its mechanism. 展开更多
关键词 numerical INVESTIGATION OF AXIAL FLOW COMPRESSOR CASING TREATMENT
下载PDF
NUMERICAL INVESTIGATION OF THREE-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS IN DIVERGENT CURVED CHANNELS AND TURBULENT MODEL STUDY
15
作者 焦德勇 杨弘炜 +2 位作者 赵志君 苏杰先 冯国泰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第7期639-646,共8页
In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by mean... In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily. 展开更多
关键词 numerical INVESTIGATION OF THREE-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS IN DIVERGENT CURVED CHANNELS AND TURBULENT MODEL STUDY
下载PDF
Numerical Investigation on Flow and Heat Transfer Performance of Supercritical Carbon Dioxide Based on Variable Turbulent Prandtlnumber Model
16
作者 Xiaokai LIU Haiyan ZHANG +3 位作者 Keyong CHENG Xiulan HUAI Haiyan LIAO Zhongmei ZHANG 《Mechanical Engineering Science》 2021年第2期1-8,共8页
Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SC... Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SCO_(2) affected by the buoyancy.Under the cooling condition,the heat transfer performance of SCO_(2) along the upward direction is best and that along the downward direction is worst when bulk fluid temperatures are below the pseudocritical temperature.Reducing the ratio of heat flux to mass flux could decrease the difference of convective heat transfer coefficient in three flow directions.Under the heating condition,heat transfer deterioration only occurs in vertical upward and horizontal flow directions.Heat transfer deterioration of SCO_(2) could be delayed by increasing the mass flux and the deterioration degree is weakened in the second half of tube along the vertical upward flow direction.Compared with the straight tube,the corrugated tube shows better comprehensive thermal performance. 展开更多
关键词 Supercritical carbon dioxide Turbulent Prandtl number Flow and heat transfer Field synergy principle numerical investigation
下载PDF
Finite Element Simulation Analysis of a Novel 3D-FRSPA for Crawling Locomotion
17
作者 Bingzhu Wang Xiangrui Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1401-1425,共25页
A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional ... A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations. 展开更多
关键词 3D-FRSPA bionic structure theoretical modeling crawling application obstacle avoidance analysis numerical investigation
下载PDF
The dynamic response and damage models of rebar reinforced polymer slabs subjected to contact and near-field explosions
18
作者 Hao-nan Zhao Hong-yuan Fang Xiao-hua Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期330-342,共13页
Non aqueous reactive polymer materials produced by the reaction of isocyanate and polyol have been widely used in infrastructure construction,which may be subjected to explosion loads during complex service conditions... Non aqueous reactive polymer materials produced by the reaction of isocyanate and polyol have been widely used in infrastructure construction,which may be subjected to explosion loads during complex service conditions.The blast response of composite materials is a crucial aspect for applications in engineering structures potentially subjected to extreme loadings.In this work,damage caused to rebar reinforced polymer slabs by surface explosive charges was studied experimentally and numerically.A total of 6 field tests were carried out to investigate the performances of the failure modes of rebar reinforced polymer slabs under contact and near-field explosions.The influence of explosive quantity(10-40 g)and stand-off distances(0-20 cm)at the damage modes were studied.The results show that the failure modes of rebar reinforced polymer slabs under near-field explosion mainly were bending and surface spalling,while under the impact of contact explosion,the failure modes were craters of the top surface,spalling of the bottom surface,and middle perforation.Furthermore,a detailed fully coupled model was developed and validated with the test data.The influences of explosive quantity and slab thickness on rebar reinforced polymer slabs under contact explosion were studied.Based on this,the calculation formula between breach diameter,explosive quantity,and slab thickness is fitted. 展开更多
关键词 Reinforced polymer slab numerical investigations Empirical prediction Damage models
下载PDF
Parametric study of droplet size in an axisymmetric flow-focusing capillary device 被引量:2
19
作者 Mostafa Rahimi Sajad Yazdanparast Pouya Rezai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1016-1022,共7页
A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF)in which a contraction zone is placed downstream of the dispersed phase nozzle.In this contraction zone,the dispersed-phase(dp... A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF)in which a contraction zone is placed downstream of the dispersed phase nozzle.In this contraction zone,the dispersed-phase(dphase)fluid is pinched off by continuous-phase(c-phase)fluid to generate micro-droplets.Studying the influence of multiple parameters such as the fluids velocities and viscosities,the interfacial tension,and nozzle and orifice diameters on the droplet size is of great importance for the design and application of CFF devices.Thus,development of more complete numerical models is required.In this paper,we show our model is compatible with experimental data and then numerically investigate the effects of aforementioned parameters on the droplet generation in a CFF microfluidic device.Simulation results showed that the c-phase flow rate,viscosity and the interfacial tension had great impacts on the droplet size.The effect of the nozzle diameter on the generated droplet size was small compared to that of the orifice in a CFF device.Using the simulation results,a correlation was also developed and suggested which predicts the droplet size with less than 15%error in a wide range of the introduced dimensionless parameters. 展开更多
关键词 Co-axial Flow Focusing MICROFLUIDICS Droplet generation numerical investigation
下载PDF
Investigation of the Mechanism of Grout Penetration in Intersected Fractures 被引量:2
20
作者 Yanxu Guo Peng Zhao +3 位作者 Qingsong Zhang Rentai Liu Lianzhen Zhang Yankai Liu 《Fluid Dynamics & Materials Processing》 EI 2019年第4期321-342,共22页
To study the penetration mechanism of cement-based slurry in intersected fractures during grouting and the related pressure distribution,we have used two different variants of cement,namely,basic cement slurry and fas... To study the penetration mechanism of cement-based slurry in intersected fractures during grouting and the related pressure distribution,we have used two different variants of cement,namely,basic cement slurry and fast-setting cement slurry.The influence of a retarder,time-varying viscosity,fracture width and location of injection hole is also considered.A finite element software is used to implement two and three-dimensional numerical models for grouting of intersected fractures in hydrostatic conditions.Results show that there are significant differences in the diffusion morphology and pressure distribution depending on the considered cement slurry.Retarder can effectively slow down the rising rate of injection pressure and extend the diffusion distance of grout.The influence of the branch fracture is more important when basic cement slurry is considered,indicating that the change of grout pressure is correlated with the slurry viscosity.The faster the viscosity increases,the less evident is the effect. 展开更多
关键词 Fracture grouting numerical investigation intersected fractures mechanism of grout penetration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部