期刊文献+
共找到769篇文章
< 1 2 39 >
每页显示 20 50 100
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
1
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order differential equations Picard method Taylor Series method numerical Solutions numerical Examples MATLAB Software
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
2
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
3
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
THE NUMERICAL STABILITY OF THE BLOCK θ-METHODS FOR DELAY DIFFERENTIAL EQUATIONS 被引量:1
4
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期1-8,共8页
This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the nume... This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method. 展开更多
关键词 numerical stability block θ methods delay differential equations.
下载PDF
On Trigonometric Numerical Integrator for Solving First Order Ordinary Differential Equation 被引量:1
5
作者 A. A. Obayomi S. O. Ayinde O. M. Ogunmiloro 《Journal of Applied Mathematics and Physics》 2019年第11期2564-2578,共15页
In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation.... In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation. 展开更多
关键词 numerical INTEGRATOR ordinary differential equation INITIAL Value Problems Stability Analysis NONSTANDARD methodS INTERPOLATION methodS
下载PDF
PROJECTION METHODS AND APPROXIMATIONS FOR ORDINARY DIFFERENTIAL EQUATIONS 被引量:1
6
作者 A. Bensebah F. Dubeau J. Gelinas 《Analysis in Theory and Applications》 1997年第3期78-90,共13页
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th... A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given. 展开更多
关键词 PROJECTION methodS AND APPROXIMATIONS for ordinary differential equationS ODE
下载PDF
A ONE-STEP EXPLICIT FORMULA FOR THE NUMERICAL SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATION
7
作者 吴新元 夏建林 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期53-58,共6页
In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also... In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included. 展开更多
关键词 STIFF equation numerical stability numerical solutions of ordinary differential equation numerical analysis.
下载PDF
Numerical Treatment of Initial Value Problems of Nonlinear Ordinary Differential Equations by Duan-Rach-Wazwaz Modified Adomian Decomposition Method 被引量:1
8
作者 Omür Umut Serpil Yasar 《International Journal of Modern Nonlinear Theory and Application》 2019年第1期17-39,共23页
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus... We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist. 展开更多
关键词 Adomian Decomposition method Duan-Rach-Wazwaz Modified Adomian Decomposition method Initial Value Problem Nonlinear ordinary differential equation Mathematica Solution 4-th Order Runge Kutta method Pade Approximants
下载PDF
Stability Analysis of a Numerical Integrator for Solving First Order Ordinary Differential Equation
9
作者 Samuel Olukayode Ayinde Adesoji Abraham Obayomi Funmilayo Sarah Adebayo 《Journal of Applied Mathematics and Physics》 2017年第11期2196-2204,共9页
In this paper, we used an interpolation function to derive a Numerical Integrator that can be used for solving first order Initial Value Problems in Ordinary Differential Equation. The numerical quality of the Integra... In this paper, we used an interpolation function to derive a Numerical Integrator that can be used for solving first order Initial Value Problems in Ordinary Differential Equation. The numerical quality of the Integrator has been analyzed to authenticate the reliability of the new method. The numerical test showed that the finite difference methods developed possess the same monotonic properties with the analytic solution of the sampled Initial Value Problems. 展开更多
关键词 numerical INTEGRATOR Autonomous and NON-AUTONOMOUS ordinary differential equation INITIAL Value Problems Stability Analysis
下载PDF
Existence of Periodic Solutions for Odd Order Ordinary Differential Equations via the Homotopy Method
10
作者 刘停战 于波 《Northeastern Mathematical Journal》 CSCD 2004年第2期135-138,共4页
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ... This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary 展开更多
关键词 homotopy method finding periodic solution odd order ordinary differential equations global convergence
下载PDF
Production of the Reduction Formula of Seventh Order Runge-Kutta Method with Step Size Control of an Ordinary Differential Equation
11
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期325-337,共13页
The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction form... The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (7,9) method (7<sup>th</sup> order and 9 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is too complicated, we introduce a subsystem from the original system where all coefficients are found with respect to 9 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. 展开更多
关键词 Initial Value Problem Runge-Kutta methods ordinary differential equations
下载PDF
Derivation of the Reduction Formula of Sixth Order and Seven Stages Runge-Kutta Method for the Solution of an Ordinary Differential Equation
12
作者 Georgios D. Trikkaliotis Maria Ch. Gousidou-Koutita 《Applied Mathematics》 2022年第4期338-355,共18页
This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical ... This paper is describing in detail the way we define the equations which give the formulas in the methods Runge-Kutta 6<sup>th</sup> order 7 stages with the incorporated control step size in the numerical solution of Ordinary Differential Equations (ODE). The purpose of the present work is to construct a system of nonlinear equations and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (6,7) method (6<sup>th</sup> order and 7 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is complicated, all coefficients are found with respect to 7 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically. Some examples for five different choices of the arbitrary values of the systems are presented in this paper. 展开更多
关键词 Initial Value Problem Runge-Kutta methods ordinary differential equations
下载PDF
A Uniformly Convergent Numerical Method Using Weak Formulation for Singularly Perturbed Differential Equations
13
作者 Weiqun Zhang 《Journal of Mathematics and System Science》 2019年第1期1-6,共6页
A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equ... A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified. 展开更多
关键词 SINGULAR PERTURBATION differential equations boundary layers numerical methods WEAK formulation
下载PDF
SECOND-ORDER ACCURATE DIFFERENCE METHOD FOR THE SINGULARLY PERTURBED PROBLEM OF FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS
14
作者 王国英 陈明伦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第5期463-468,共6页
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
关键词 SECOND-ORDER ACCURATE DIFFERENCE method for THE SINGULARLY PERTURBED PROBLEM OF FOURTH-ORDER ordinary differential equationS
下载PDF
A Radial Basis Function Method with Improved Accuracy for Fourth Order Boundary Value Problems
15
作者 Scott A. Sarra Derek Musgrave +1 位作者 Marcus Stone Joseph I. Powell 《Journal of Applied Mathematics and Physics》 2024年第7期2559-2573,共15页
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with... Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used. 展开更多
关键词 numerical Partial differential equations Boundary Value Problems Radial Basis Function methods Ghost Points Variable Shape Parameter Least Squares
下载PDF
Solution of Laguerre’s Differential Equations via Modified Adomian Decomposition Method
16
作者 Mariam Al-Mazmumy Aishah A. Alsulami 《Journal of Applied Mathematics and Physics》 2023年第1期85-100,共16页
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an... This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of. 展开更多
关键词 Modification method Singular ordinary differential equations Laguerre’s equation Associated Laguerre’s equation
下载PDF
THE STABILITY OF LINEAR MULTISTEP METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS 被引量:2
17
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1995年第1期10-16,共7页
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the... This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region. 展开更多
关键词 numerical stability linear mullistep method DELAY differential equation.
下载PDF
The θ-Methods in Numerical Solution of Systems of Differential Equations with Two Delay Terms 被引量:2
18
作者 Tian Hongjiong & Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期32-40,共9页
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio... This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1. 展开更多
关键词 Delay differential equations numerical solution Θ-methodS Asymptotic stability Schur polynomial.
下载PDF
ARC-LENGTH METHOD FOR DIFFERENTIAL EQUATIONS
19
作者 武际可 许为厚 丁红丽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第8期115-121,共7页
An arc_length method is presented to solve the ordinary differential equations (ODEs) with certain types of singularity such as stiff property or discontinuity on continuum problem. By introducing one or two arc_lengt... An arc_length method is presented to solve the ordinary differential equations (ODEs) with certain types of singularity such as stiff property or discontinuity on continuum problem. By introducing one or two arc_length parameters as variables, the differential equations with singularity are transformed into non_singularity equations, which can be solved by usual methods. The method is also applicable for partial differential equations (PDEs), because they may be changed into systems of ODEs by discretization. Two examples are given to show the accuracy, efficiency and application. 展开更多
关键词 differential equation numerical method arc_length method Stiff equation Burgers' equation
下载PDF
Noether's and Poisson's methods for solving differential equation x_s^((m))=F_s(t,x_k^((m-2)) ,x_k^((m-1)))
20
作者 何光 梅凤翔 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期822-824,共3页
This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether me... This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation. 展开更多
关键词 Noether's method Poisson's method higher order ordinary differential equation integration
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部