The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conducti...The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.展开更多
3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stre...By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub>, age of the universe <i>t</i><sub>Ω</sub> etc. The development of the state equation highlights the importance of not neglecting any of the differential terms given the very large amounts in play that can counterbalance the infinitesimals. Some assumptions were put forth in order to solve these equations. The current version of the model partially explains several of the observed phenomena that raise questions. Numerical application of the model has yielded the following results, among others: Initially, during the Planck era, at the very beginning of Planck time, <i>t<sub>p</sub></i>, the universe contained a single photon at Planck temperature <i>T<sub>P</sub></i>, almost Planck energy <i>E<sub>P</sub></i> in the Planck volume. During the photon inflation phase (before characteristic time ~10<sup>-9</sup> [s]), the number of original photons (alphatons) increased at each unit of Planck time <i>t<sub>p</sub></i> and geometrical progression~<i>n</i><sup>3</sup>, where n is the quotient of cosmic time over Planck time <i>t</i>/<i>t<sub>p</sub></i>. Then, the primordial number of photons reached a maximum of <i>N</i>~10<sup>89</sup>, where it remained constant. These primordial photons (alphatons) are still present today and represent the essential of the energy contained in the universe via the cosmological constant expressed in the form of energy <i>E</i><sub>Λ</sub>. Such geometric growth in the number of photons can bring a solution to the horizon problem through <i>γγ</i> exchange and a photon energy volume that is in phase with that of the volume energy of the universe. The predicted total mass (p, n, e, and <i>ν</i>), based on the Maxwell-Juttner relativistic statistical distribution, is ~7 × 10<sup>50</sup> [kg]. The predicted cosmic neutrino mass is ≤8.69 × 10<sup>-32</sup> [kg] (≤48.7 [keV·<i>c</i><sup>-2</sup>]) if based on observations of SN1987A. The temperature variation of the cosmic microwave background (CMB), as measured by Planck, can be said to be partially due to energy variations in the universe (Δ<i>U</i>/<i>U</i>) during the primordial baryon synthesis (energy jump from the creation of protons and neutrons).展开更多
Regard for the fuzziness and the randomness in some acoustic fields,a method for the numerical analysis of the 2D acoustic field with Fuzzy-Random parameters was proposed based on the equivalent conversion of informat...Regard for the fuzziness and the randomness in some acoustic fields,a method for the numerical analysis of the 2D acoustic field with Fuzzy-Random parameters was proposed based on the equivalent conversion of information entropy.In the proposed method,a fuzzyrandom acoustic field was treated as a pure fuzzy acoustic field or a pure random acoustic field by transforming all the variables into fuzzy variables or random variables.Perturbation finite element methods for analyzing the two-dimensional acoustic fuzzy and random field are deduced.The sound pressure response of a 2D acoustic tube and the 2D acoustic cavity of a car with fuzzy-random parameters were analyzed by the proposed method and the Monte Carlo method,the results show that the proposed method can be well applied to the numerical analysis of the 2D acoustic field with fuzzy-random parameters,and has good prospect of engineering application.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.展开更多
Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of exp...Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added.展开更多
文摘The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.
文摘By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub>, age of the universe <i>t</i><sub>Ω</sub> etc. The development of the state equation highlights the importance of not neglecting any of the differential terms given the very large amounts in play that can counterbalance the infinitesimals. Some assumptions were put forth in order to solve these equations. The current version of the model partially explains several of the observed phenomena that raise questions. Numerical application of the model has yielded the following results, among others: Initially, during the Planck era, at the very beginning of Planck time, <i>t<sub>p</sub></i>, the universe contained a single photon at Planck temperature <i>T<sub>P</sub></i>, almost Planck energy <i>E<sub>P</sub></i> in the Planck volume. During the photon inflation phase (before characteristic time ~10<sup>-9</sup> [s]), the number of original photons (alphatons) increased at each unit of Planck time <i>t<sub>p</sub></i> and geometrical progression~<i>n</i><sup>3</sup>, where n is the quotient of cosmic time over Planck time <i>t</i>/<i>t<sub>p</sub></i>. Then, the primordial number of photons reached a maximum of <i>N</i>~10<sup>89</sup>, where it remained constant. These primordial photons (alphatons) are still present today and represent the essential of the energy contained in the universe via the cosmological constant expressed in the form of energy <i>E</i><sub>Λ</sub>. Such geometric growth in the number of photons can bring a solution to the horizon problem through <i>γγ</i> exchange and a photon energy volume that is in phase with that of the volume energy of the universe. The predicted total mass (p, n, e, and <i>ν</i>), based on the Maxwell-Juttner relativistic statistical distribution, is ~7 × 10<sup>50</sup> [kg]. The predicted cosmic neutrino mass is ≤8.69 × 10<sup>-32</sup> [kg] (≤48.7 [keV·<i>c</i><sup>-2</sup>]) if based on observations of SN1987A. The temperature variation of the cosmic microwave background (CMB), as measured by Planck, can be said to be partially due to energy variations in the universe (Δ<i>U</i>/<i>U</i>) during the primordial baryon synthesis (energy jump from the creation of protons and neutrons).
基金supported by the Independent Subject of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body in Hunan University(60870002)
文摘Regard for the fuzziness and the randomness in some acoustic fields,a method for the numerical analysis of the 2D acoustic field with Fuzzy-Random parameters was proposed based on the equivalent conversion of information entropy.In the proposed method,a fuzzyrandom acoustic field was treated as a pure fuzzy acoustic field or a pure random acoustic field by transforming all the variables into fuzzy variables or random variables.Perturbation finite element methods for analyzing the two-dimensional acoustic fuzzy and random field are deduced.The sound pressure response of a 2D acoustic tube and the 2D acoustic cavity of a car with fuzzy-random parameters were analyzed by the proposed method and the Monte Carlo method,the results show that the proposed method can be well applied to the numerical analysis of the 2D acoustic field with fuzzy-random parameters,and has good prospect of engineering application.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.
基金the National Natural Science Foundation of China (No.51275415)Program for New Century Excellent Talents in University+1 种基金the fund of the State Key Laboratory of Solidifcation Processing in NWPUNatural Science Basic Research Plan in Shaanxi Province (No.2011JQ6004),and the 111 Project (No.B08040) for the support
文摘Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added.