Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g...Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials.展开更多
The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results...The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.展开更多
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering application...Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.展开更多
Fluid-Structure Interaction(FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to e...Fluid-Structure Interaction(FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method(MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit(MPS) method is used to calculate the fluid domain, while the Finite Element Method(FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.展开更多
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large edd...A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.展开更多
Moving-particle semi-implicit(MPS) method is a new mesh-free numerical method based on Lagrangian particle. In this paper, MPS method is applied to the study on numerical wave tank. For the purpose of simulating numer...Moving-particle semi-implicit(MPS) method is a new mesh-free numerical method based on Lagrangian particle. In this paper, MPS method is applied to the study on numerical wave tank. For the purpose of simulating numerical wave, we combine the MPS method with large eddy simulation(LES) which can simulate the turbulence in the flow. The intense pressure fluctuation is a significant shortcoming in MPS method. So, we improve the original MPS method by using a new pressure Poisson equation to ease the pressure fluctuation. Divergencefree condition representing fluid incompressible is used to calculate pressure smoothly. Then, area-time average technique is used to deal with the calculation. With these improvements, the modified MPS-LES method is applied to the simulation of numerical wave. As a contrast, we also use the original MPS-LES method to simulate the wave in a numerical wave tank. The result shows that the new method is better than the original MPS-LES method.展开更多
This paper investigates the sloshing phenomena in a spherical liquid tank using the moving particle semi-implicit(MPS)method,a crucial study in fluid dynamics.Distinct from previous research focused on rectangular or ...This paper investigates the sloshing phenomena in a spherical liquid tank using the moving particle semi-implicit(MPS)method,a crucial study in fluid dynamics.Distinct from previous research focused on rectangular or LNG tanks,this work explores the unique motion patterns inherent to spherical geometries.The accuracy of our in-house MPS solver MLParticle-SJTU is validated against experimental data and finite volume method(FVM).And the MPS method reveals a closer alignment with experimental outcomes,which suggests that MPS method is particularly effective for modeling complex,non-linear fluid behaviors.Then the fluid’s response to excitation at its natural frequency is simulated,showcasing vigorous sloshing and rotational motion.Detailed analyses of the fluid motion are conducted by drawing streamline diagrams,velocity vector diagrams,and vorticity maps.The fluid’s motion response is explored using both time-domain and frequency-domain curves of the fluid centroid,as well as the sloshing force.展开更多
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, res...The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
When a partially loaded liquid container vibrates along the vertical direction,the liquid inside will oscillate regularly,which is called Faraday wave.In some cases,the wave form of the Faraday wave is stable and smoo...When a partially loaded liquid container vibrates along the vertical direction,the liquid inside will oscillate regularly,which is called Faraday wave.In some cases,the wave form of the Faraday wave is stable and smooth,and sometimes there is violent wave breaking and liquid splashing.In this paper,the Faraday waves inside the cylindrical tank and the hexagonal tanks are simulated by the in-house solver MLParticle-SJTU base on the moving particle semi-implicit(MPS)method.The surface tension model is used to better model the free surfaces with large deformations.Phenomena such as wave breaking and liquid splashing are well captured and simulated.The results show that the waveforms are significantly different at different excitation frequencies.And the tank shape also has an obvious effect on the waveform.展开更多
Slamming is the phenomenon of structure impacting the water surface. It always results in the extremely high load on the structure. This paper is mainly concerned with the slamming force caused by the wave-plate inter...Slamming is the phenomenon of structure impacting the water surface. It always results in the extremely high load on the structure. This paper is mainly concerned with the slamming force caused by the wave-plate interaction. In this paper, the process of solitary wave impacting onto the horizontal plate is simulated with the help of the moving particle semi-implicit and finite element coupled method(MPS-FEM). The MPS method is adopted to calculate the fluid domain while the structural domain is solved by FEM method. In the first series of simulations, the profiles of the solitary waves with various amplitudes, which are generated in the numerical wave tank, are compared with the theoretical results. Thereafter the interaction between the solitary waves and a rigid plate is simulated. The effects of wave amplitude, as well as the elevation of the plate above the initial water level, on the slamming force are numerically investigated. The calculated results are compared with the available experimental data. Finally, the interactions between the solitary waves and the elastic plate are also simulated. The effects of the structural flexibility on the wave-induced force are analyzed by the comparison between the cases with elastic and the rigid plate.展开更多
Faraday wave is a phenomenon of sloshing due to a heave motion of a partially filled tank,which is also called parametric instability or parametric resonance.In the present paper,the phenomenon of faraday wave in a pu...Faraday wave is a phenomenon of sloshing due to a heave motion of a partially filled tank,which is also called parametric instability or parametric resonance.In the present paper,the phenomenon of faraday wave in a pure heave excited square tank is numerically simulated through the moving particle semi-implicit(MPS)method.The surface tension effect and a new Dirichlet boundary condition for the pressure Poisson equation are considered to avert unphysical fragmentation and clustering of particles in splash simulation.In the numerical simulation,the evolution of wave motion,and the non-linearity together with breaking phenomenon of faraday wave can be observed.The agreement is good in general,both amplitude and phase.Besides,the parameter studies including the excitation frequency and the forcing amplitude are carried out to analyses the mechanism of resonances response.展开更多
In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this pape...In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this paper are to investigate preliminarily the effect of viscosity and finite size domain on the evolution of the RT instability.The simulation results demonstrate that(1) the mushroom-like vortex motions are formed in late time due to fluid viscosity,which give rise to the secondary shear flow instability,(2) the finite thickness of the fluid layer limits the development of the RT instability.The above results are consistent with the experiments and theoretical analyses.Meanwhile,the linear growth rate of the RT instability obtained from the numerical simulation is also in agreement with theoretical analyses.And the nonlinear threshold from the simulation result is comparable with the theoretical estimate.Two stages of the nonlinear evolution of the RT instability are revealed in the numerical simulation,nonlinear saturation and turbulent mixing.展开更多
文摘Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials.
文摘The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.
基金supported by the National Natural Science Foundation of China(Grant No.50979059)
文摘Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.
基金Supported by the National Natural Science Foundation of China(51379125,51490675,11432009,51579145)Chang Jiang Scholars Program(T2014099)+3 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovative Special Project of Numerical Tank of the Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for Doctoral Students
文摘Fluid-Structure Interaction(FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method(MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit(MPS) method is used to calculate the fluid domain, while the Finite Element Method(FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479116 and 11272213)
文摘A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.
基金the National Natural Science Foundation of China(Nos.50979059 and 11272213)
文摘Moving-particle semi-implicit(MPS) method is a new mesh-free numerical method based on Lagrangian particle. In this paper, MPS method is applied to the study on numerical wave tank. For the purpose of simulating numerical wave, we combine the MPS method with large eddy simulation(LES) which can simulate the turbulence in the flow. The intense pressure fluctuation is a significant shortcoming in MPS method. So, we improve the original MPS method by using a new pressure Poisson equation to ease the pressure fluctuation. Divergencefree condition representing fluid incompressible is used to calculate pressure smoothly. Then, area-time average technique is used to deal with the calculation. With these improvements, the modified MPS-LES method is applied to the simulation of numerical wave. As a contrast, we also use the original MPS-LES method to simulate the wave in a numerical wave tank. The result shows that the new method is better than the original MPS-LES method.
基金Project supported by the National Natural Science Foundation of China (Grant No.52131102)the National Key Research and Development Program of China (Grant No.2022YFC2806705).
文摘This paper investigates the sloshing phenomena in a spherical liquid tank using the moving particle semi-implicit(MPS)method,a crucial study in fluid dynamics.Distinct from previous research focused on rectangular or LNG tanks,this work explores the unique motion patterns inherent to spherical geometries.The accuracy of our in-house MPS solver MLParticle-SJTU is validated against experimental data and finite volume method(FVM).And the MPS method reveals a closer alignment with experimental outcomes,which suggests that MPS method is particularly effective for modeling complex,non-linear fluid behaviors.Then the fluid’s response to excitation at its natural frequency is simulated,showcasing vigorous sloshing and rotational motion.Detailed analyses of the fluid motion are conducted by drawing streamline diagrams,velocity vector diagrams,and vorticity maps.The fluid’s motion response is explored using both time-domain and frequency-domain curves of the fluid centroid,as well as the sloshing force.
基金supported by the National Natural Science Foundation of China (11132005 and 50706021)
文摘The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.
基金Project supported by the National Natural Science Foundation of China(Grant No.52131102)the National Key Research and Development Program of China(Grant Nos.2022YFC2806705,2019YFB1704200).
文摘When a partially loaded liquid container vibrates along the vertical direction,the liquid inside will oscillate regularly,which is called Faraday wave.In some cases,the wave form of the Faraday wave is stable and smooth,and sometimes there is violent wave breaking and liquid splashing.In this paper,the Faraday waves inside the cylindrical tank and the hexagonal tanks are simulated by the in-house solver MLParticle-SJTU base on the moving particle semi-implicit(MPS)method.The surface tension model is used to better model the free surfaces with large deformations.Phenomena such as wave breaking and liquid splashing are well captured and simulated.The results show that the waveforms are significantly different at different excitation frequencies.And the tank shape also has an obvious effect on the waveform.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51490675,11432009,51579145and 51379125)
文摘Slamming is the phenomenon of structure impacting the water surface. It always results in the extremely high load on the structure. This paper is mainly concerned with the slamming force caused by the wave-plate interaction. In this paper, the process of solitary wave impacting onto the horizontal plate is simulated with the help of the moving particle semi-implicit and finite element coupled method(MPS-FEM). The MPS method is adopted to calculate the fluid domain while the structural domain is solved by FEM method. In the first series of simulations, the profiles of the solitary waves with various amplitudes, which are generated in the numerical wave tank, are compared with the theoretical results. Thereafter the interaction between the solitary waves and a rigid plate is simulated. The effects of wave amplitude, as well as the elevation of the plate above the initial water level, on the slamming force are numerically investigated. The calculated results are compared with the available experimental data. Finally, the interactions between the solitary waves and the elastic plate are also simulated. The effects of the structural flexibility on the wave-induced force are analyzed by the comparison between the cases with elastic and the rigid plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.52131102,51909160 and 51879159)the National Key Research and Development Program of China(Grant No.2019YFB1704200).
文摘Faraday wave is a phenomenon of sloshing due to a heave motion of a partially filled tank,which is also called parametric instability or parametric resonance.In the present paper,the phenomenon of faraday wave in a pure heave excited square tank is numerically simulated through the moving particle semi-implicit(MPS)method.The surface tension effect and a new Dirichlet boundary condition for the pressure Poisson equation are considered to avert unphysical fragmentation and clustering of particles in splash simulation.In the numerical simulation,the evolution of wave motion,and the non-linearity together with breaking phenomenon of faraday wave can be observed.The agreement is good in general,both amplitude and phase.Besides,the parameter studies including the excitation frequency and the forcing amplitude are carried out to analyses the mechanism of resonances response.
基金supported by the National Natural Science Foundation of China (Grant No. 50476008)
文摘In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this paper are to investigate preliminarily the effect of viscosity and finite size domain on the evolution of the RT instability.The simulation results demonstrate that(1) the mushroom-like vortex motions are formed in late time due to fluid viscosity,which give rise to the secondary shear flow instability,(2) the finite thickness of the fluid layer limits the development of the RT instability.The above results are consistent with the experiments and theoretical analyses.Meanwhile,the linear growth rate of the RT instability obtained from the numerical simulation is also in agreement with theoretical analyses.And the nonlinear threshold from the simulation result is comparable with the theoretical estimate.Two stages of the nonlinear evolution of the RT instability are revealed in the numerical simulation,nonlinear saturation and turbulent mixing.