期刊文献+
共找到1,971篇文章
< 1 2 99 >
每页显示 20 50 100
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
1
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Numerical Simulation and Experimental Study on the Performance of Gas/liquid Spiral Separator 被引量:6
2
作者 周帼彦 涂善东 凌祥 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第5期596-603,共8页
The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the rel... The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment. 展开更多
关键词 gas/liquid separator spiral structure computational fluid dynamics pressure drop separation efficiency numerical simulation
下载PDF
Numerical Simulation of the Marangoni Effect with Interphase Mass Transfer Between Two Planar Liquid Layers 被引量:3
3
作者 毛在砂 陆平 +1 位作者 张广积 杨超 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期161-170,共10页
The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of ... The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications. 展开更多
关键词 Marangoni effect Marangoni convection mass transfer numerical simulation two liquid layer system
下载PDF
Numerical simulation of steady flow past a liquid sphere immersed in simple shear flow at low and moderate Re 被引量:2
4
作者 李润 张敬升 +2 位作者 雍玉梅 汪洋 杨超 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期15-21,共7页
This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation i... This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio. 展开更多
关键词 Shear flow liquid sphere numerical simulation STREAMLINE Jeffery orbit
下载PDF
Numerical simulation of dynamic process for liquid film spreading by lattice Boltzmann method and its experimental verification 被引量:2
5
作者 刘邱祖 寇子明 韩振南 《Journal of Central South University》 SCIE EI CAS 2014年第8期3247-3253,共7页
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna... Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity. 展开更多
关键词 liquid film spreading contact angle lattice Boltzmann method (LBM) retraction phenomenon numerical simulation
下载PDF
Numerical simulation of liquid aluminum leakage in casting process 被引量:2
6
作者 Ling-yu KONG Xiao-zhen LIU +3 位作者 Zhong-ning SHI Tuo-fu LI Zhao-wen WANG Ai-min LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期297-305,共9页
A model was built to simulate liquid aluminum leakage during the casting process,including transient trough flow,orifice outflow,and spread,to prevent the explosion.A comparison between the simulation data and the the... A model was built to simulate liquid aluminum leakage during the casting process,including transient trough flow,orifice outflow,and spread,to prevent the explosion.A comparison between the simulation data and the theoretical calculation results verifies that the model has remarkable adaptability and high accuracy.Although the height of liquid aluminum in the mixing furnace and outlet radius are changed,the molten aluminum will not leak during the casting process.The aluminum in the trough moves forward in a wave-like motion and causes a leakage.The spread of the leaked aluminum resembles a long strip on the ground.The leakage amount and spread area of liquid aluminum increase with increasing the height of liquid aluminum in the mixing furnace. 展开更多
关键词 liquid aluminum leakage explosion leakage state spread pattern numerical simulation volume of fluid(VOF)model
下载PDF
Numerical Simulation and Analysis of Solid-liquid Two-phase Flow in Centrifugal Pump 被引量:57
7
作者 ZHANG Yuliang LI Yi +2 位作者 CUI Baoling ZHU Zuchao DOU Huashu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期53-60,共8页
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ... The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps. 展开更多
关键词 centrifugal pump solid-liquid two-phase particle property hydraulic performance ABRASION numerical simulation
下载PDF
Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke 被引量:3
8
作者 Li Guomei Wang Yueshe +3 位作者 He Renyang Cao Xuewen Lin Changzhi Meng Tao 《Petroleum Science》 SCIE CAS CSCD 2009年第1期91-97,共7页
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa... Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L). 展开更多
关键词 Solid-liquid two-phase flow discrete particle hard sphere model CHOKE erosion rate antierosion numerical simulation
下载PDF
Influence of liquid water content on wind turbine blade icing by numerical simulation
9
作者 LI Yan SUN Ce +4 位作者 JIANG Yu YI Xian GUO Wenfeng WANG Shaolong FENG Fang 《排灌机械工程学报》 EI CSCD 北大核心 2019年第6期513-520,共8页
In order to research the influence of liquid water content ( LWC ) on blade icing of wind turbine, a numerical simulation method for blade icing was established. The numerical simulation was based on low speed viscous... In order to research the influence of liquid water content ( LWC ) on blade icing of wind turbine, a numerical simulation method for blade icing was established. The numerical simulation was based on low speed viscous N-S equation. The trajectory equation of water droplets was established by Lagrangian method. The mass and energy conservation equations of the water droplets impacting on the surface of the blade were solved based on control body theory. Three sections along blade span wise of a 1.5 MW wind turbine were decided to simulate icing. Five kinds of LWC were selected for simulation including 0.2,0.4,0.6,0.8 and 1.0 g/m^3 under two ambient temperatures of -10 ℃ and -20 ℃. The medium volume droplet diameter ( MVD ) was 30μm. The simulations included icing shape on blade surface, dimensionless icing area and dimensionless maximum stagnation thickness. Furthermore, the flow fields around both the iced blade airfoil and the original one were simulated and analyzed. Accor-ding to the results, the typical icing characteristics of icing shape, icing area and thickness were greatly affected by the difference of LWCs. This study can provide theoretical reference for the research on antiicing and deicing of wind turbine blade. 展开更多
关键词 WIND TURBINE ICING AIRFOIL numerical simulation liquid water CONTENT
下载PDF
Numerical Simulation of Liquid–Solid Countercurrent Fluidization inside an Extraction Column Based on Particle Trajectory Model
10
作者 李忠媛 李鑫钢 +1 位作者 隋红 李洪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1179-1186,共8页
The liquid–solid countercurrent fluidization process in an extraction column was numerically simulated based on the particle trajectory model of Eulerian–Lagrangian method. The simulation approach was validated by p... The liquid–solid countercurrent fluidization process in an extraction column was numerically simulated based on the particle trajectory model of Eulerian–Lagrangian method. The simulation approach was validated by previous experiments. A power function correlation was proposed for dimensionless slip velocity Uslip/Utand hold-up fraction φ, and the operational zone in the countercurrent fluidization was determined. Simultaneous countercurrent fluidization of particles with different diameters was also simulated. The comparison shows that the simulation results are consistent with the calculation values from the multi-particle free sedimentation model based on noninterference assumption, verifying the reliability of the approach in present work. 展开更多
关键词 liquid–solid countercurrent extraction FLUIDIZATION numerical simulation Particle TRAJECTORY model
下载PDF
Numerical simulation of liquid desiccant evaporator driven by heat pump
11
作者 NIU Run-ping CHEN Xiao-yi +1 位作者 WANG Zi-ye KUANG Da-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2197-2213,共17页
The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature fiel... The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature field and velocity field in the device were obtained. The performance of the liquid-desiccant evaporator was studied as the concentration of the inlet solution varied between 21% and 30% and the pipe wall temperature between 30 and 50 ℃. Results show that the humidification rate and the humidification efficiency increased with the inlet air temperature, the solution flow rate, the solution temperature, and the pipe wall temperature. The humidification rate and humidification efficiency decreased with increasing moisture content in inlet air and the concentration of inlet solution. The humidification rate increased substantially but the humidification efficiency decreased as the inlet air flow rate increased. The error between the simulations and experimental results is acceptable, meaning that our model can provide a theoretical basis for optimizing the performance of a humidifying evaporator. 展开更多
关键词 heat pump condensation heat discrete phase model (DPM) liquid desiccant evaporator numerical simulation
下载PDF
Numerical simulation of the Liquid-liquid phase separation and microstructure evolution of Al-In immiscible alloys during cooling
12
作者 苏彦庆 崔红保 +3 位作者 郭景杰 刘源 贾均 傅恒志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期149-154,共6页
A numerical model has been developed to describe the microstructural evolution of Al In immiscible alloys through the miscibility gap. The model considers the common action of nucleation, diffusible growth, Brownian c... A numerical model has been developed to describe the microstructural evolution of Al In immiscible alloys through the miscibility gap. The model considers the common action of nucleation, diffusible growth, Brownian collision and motion collision between the second phase droplets. The simulation results are dynamically visualized and show that the volume fraction, distribution and size of the second phase droplets satisfactorily agree with the experimental results. So the model can be used to predict the microstructural evolution of Al In immiscible alloys during the cooling process. 展开更多
关键词 Al-In IMMISCIBLE alloy numerical simulation microstructure liquid-liquid phase SEPARATION process VISUALIZATION
下载PDF
Numerical Simulation and Experimental Research on the Influence of Solid-phase Characteristics on Centrifugal Pump Performance 被引量:11
13
作者 LI Yi ZHU Zuchao +1 位作者 HE Weiqiang HE Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1184-1189,共6页
The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-ph... The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump. 展开更多
关键词 solid-liquid two phase centrifugal pump performance test numerical simulation
下载PDF
Numerical Simulation of Optimization of Mixing Tank for Residue Upgrading Reactor 被引量:3
14
作者 Bao Di Tang Xiaojin Zhu Zhenxing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第2期110-117,共8页
For studying the mixing tank for RMAC (residue upgrading to maximize asphaltene conversion) reactor, the CFD simulation was employed to simulate the flow field in the mixing tank. The dispersion of liquid-liquid phase... For studying the mixing tank for RMAC (residue upgrading to maximize asphaltene conversion) reactor, the CFD simulation was employed to simulate the flow field in the mixing tank. The dispersion of liquid-liquid phase in the mixing tank and the power of turbines were investigated. The simulation results showed that compared with the original doublelayer propeller, the A310-swept double-layer impellers could reduce the liquid heterogeneous degree by 27.5% and the stirring power by 3.25%. The influence of rotation speed on the heterogeneous degree and stirring power was investigated, and the critical rotation speed was obtained. The optimal rotation speed was determined to be 240 r/min. The heterogeneous degree was 0.19 and the minimum stirring power was 10.89 W. By optimizing the impeller selection and process conditions, the overall performance of the mixing tank could be significantly improved. 展开更多
关键词 liquid-liquid MIXING IMPELLERS numerical simulation critical rotation speed
下载PDF
Numerical simulation of mold-temperature-control solidification 被引量:2
15
作者 游东东 邵明 +1 位作者 李元元 周照耀 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第3期443-448,共6页
A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat ... A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3-0.4 mm/s, which is greater than 0.1-0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality. 展开更多
关键词 数值模拟 温度控制 凝固 固液界面
下载PDF
Three-dimensional Numerical Simulation of Combustion Field in the Combustion Chamber
16
作者 闫萍 钱志博 +1 位作者 杨杰 张进军 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第2期132-135,共4页
In order to study the effect of rotation on the combustion in the underwater vehicle,a two-phase turbulent combustion process is described with Reynolds stress turbulence model,eddy-dissipation turbulent combustion mo... In order to study the effect of rotation on the combustion in the underwater vehicle,a two-phase turbulent combustion process is described with Reynolds stress turbulence model,eddy-dissipation turbulent combustion model,P-1 radiation model and particle tracking model of liquid. The flow in the rotating combustion chamber is simulated at two different working speeds,0?r/min and 1?000?r/min by Fluent software. The temperature,gas velocity,static pressure of wall and fuel concentration are computed and compared. The results show that the combustion in rotating combustor is faster and more effective. 展开更多
关键词 火箭引擎 液体燃料 燃烧 三维数值模拟
下载PDF
Simulation and Experiment for Oxygen-enriched Combustion Engine Using Liquid Oxygen to Solidify CO2 被引量:5
17
作者 LIU Yongfeng JIA Xiaoshe +3 位作者 PEI Pucheng LU Yong YI Li SHI Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期188-194,共7页
For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techni... For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine. 展开更多
关键词 internal combustion Rankle cycle engine CO2 emission reduction carbon-sequestration with liquid oxygen KIVA-3V program oxygen-enriched combustion numerical simulation experiments
下载PDF
Numerical study on dehumidifying process in falling film dehumidifier 被引量:3
18
作者 孙健 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期272-277,共6页
A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions des... A counter flow model of simultaneous heat and mass transfer of a vapor absorption process in a falling film dehumidifier is developed. The governing equations with appropriate boundaries and interfacial conditions describing the dehumidifying process are set up. Calcium chloride is applied as the desiccant. The dehumidifying process between falling liquid desiccant film and process air is analyzed and calculated by the control volume approach. Velocity field, temperature distribution and outlet parameters for both the process air and desiccant solution are obtained. The effects of inlet conditions and vertical wall height on the dehumidification process are also predicted. The results show that the humidity ratio, temperature and mass fraction of salt decrease rapidly at the inlet region but slowly at the outlet region along the vertical wall height. The dehumidification processes can be enhanced by increasing the vertical wall height, desiccant solution flow rates or inlet salt concentration in the desiccant solution, respectively. Similarly, the dehumidification process can be improved by decreasing the inlet humidity ratio or flow rates of the process air. The obtained results can improve the performance of the dehumidifier and provide the theoretical basis for the optimization design, and the ooeration and modulation of the solar liquid desiccant air-conditioning systems. 展开更多
关键词 DEHUMIDIFIER liquid desiccant falling film numerical simulation
下载PDF
NUMERICAL VALIDATION OF COMPUTATIONAL MODEL FOR SHEET CAVITATING FLOWS 被引量:1
19
作者 LI Jun LIU Lijun FENG Zhenping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期45-49,共5页
A computational modeling for the sheet cavitating flows is presented. The cavitation model is implemented in a viscous Navier-Stokes solver. The cavity interface and shape are determined using an iterative procedure m... A computational modeling for the sheet cavitating flows is presented. The cavitation model is implemented in a viscous Navier-Stokes solver. The cavity interface and shape are determined using an iterative procedure matching the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient on the wall, is taken into account in updating the cavity shape iteratively. Numerical computations are performed for the sheet cavitating flows at a range of cavitation numbers across the hemispheric headform/cylinder body with different grid numbers. The influence of the relaxation factor in the cavity shape updating scheme for the algorithm accuracy and reliability is conducted through comparison with other two cavity shape updating numerical schemes. The results obtained are reasonable and the iterative procedure of cavity shape updating is quite stable, which demonstrate the superiority of the proposed cavitation model and algorithms. 展开更多
关键词 Sheet cavitation liquid/vapor tracking method numerical simulation
下载PDF
Remediation of BTEX-Contaminated Groundwater by Air Sparging:A Simulation Study
20
作者 Huaqing Chen,Yilian Li School of Environmental Studies,China University of Geosciences(Wuhan),Wuhan 430074,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期24-24,共1页
BTEX contaminants in groundwater seriously impact the ecological environment and human health that has become one of the urgent problems needed to be solved.Due to its low density,low solubility and strong volatility,... BTEX contaminants in groundwater seriously impact the ecological environment and human health that has become one of the urgent problems needed to be solved.Due to its low density,low solubility and strong volatility,BTEX in groundwater usually form non-aqueous phase liquid(NAPL) contaminants and exist in three phases:gas,aqueous and oil phase.Air sparging(AS) is an in situ treatment technology 展开更多
关键词 GROUNDWATER BTEX CONTAMINATION NON-AQUEOUS phase liquid air sparging soil vapor extraction numerical simulation
下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部