In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwav...In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.展开更多
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde...Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section.展开更多
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperatu...Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.展开更多
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(531105050037)supported by the Changjiang Scholars and Innovative Research Team in University,ChinaProjects(201208430262,201306130031)supported by the National Studying Abroad Foundation Project of China
文摘In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.
基金support by the National Natural Science Foundation of China(NSFC 51474024and 51334001)National Key Technology Research and Development Program of the 12th Five-year Plan of China(12FYP 2015BAF03B01)
文摘Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section.
文摘Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.