To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ...To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS.展开更多
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele...The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.展开更多
The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is establishe...The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program.Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25-0.5 cm and 1-3 cm.The Euler--fluxcorrected transport solver is found to be suitable for the far-field calculation after mapping.A numerical simulation is conducted to study the formation,propagation,and interaction of the shock wave of the composite charge for different initiation modes.It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge.Additionally,it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation,and the peak pressure of the shock wave exponentially decays,fitting the calculation formula of the peak overpressure attenuation under different initiation modes,which is obtained and verified by experiment.The difference between numerical and experimental results is less than 10%,and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.展开更多
In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced compos...In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.展开更多
At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is lar...At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51774137)the Natural Science Foundation of Hebei Province,China(No.E2021209006)。
文摘To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS.
基金Supported by National Natural Science Foundation of China(No.50608026)
文摘The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.
基金funded by the National Natural Science Foundation of China under NO.11202103Qing-lan Project of Jiangsu Province。
文摘The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program.Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25-0.5 cm and 1-3 cm.The Euler--fluxcorrected transport solver is found to be suitable for the far-field calculation after mapping.A numerical simulation is conducted to study the formation,propagation,and interaction of the shock wave of the composite charge for different initiation modes.It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge.Additionally,it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation,and the peak pressure of the shock wave exponentially decays,fitting the calculation formula of the peak overpressure attenuation under different initiation modes,which is obtained and verified by experiment.The difference between numerical and experimental results is less than 10%,and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.
基金The project supported by the Special Funds for the National Major Fundamental Research Projects(2004CB619304)the National Natural Science Foundation of China(10276020 and 50371042)the Key Grant Project of Chinese Ministry of Education(0306)
文摘In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.
基金Project was supported by the Ministry of Industry and Information Technology High-Tech Ship Research Project:Research on Key Common Processes of Ship Intelligent Manufacturing(MC-201704-Z02)Guangdong Special Branch Plans(2019TQ05C752)Marine Economic Development(Six Marine Industries)Special Funding Project of Guangdong Province(Grant number GDNRC[2021]46).
文摘At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry.