To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surroundi...Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.展开更多
According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explor...According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.展开更多
Damage and threats to hydraulic and submarine structures by underwater explosions(UNDEXs)have raised much attention.The centrifuge model test,compared to prototype test,is a more promising way to examine the problem w...Damage and threats to hydraulic and submarine structures by underwater explosions(UNDEXs)have raised much attention.The centrifuge model test,compared to prototype test,is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously.This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate.Nineteen methodical centrifuge tests of UNDEXs were conducted.The shock wave pressure,bubble oscillation pressure,acceleration and the strain of the air-backed steel plate were recorded and compared with numerical studies using the finite element analysis(FEA)commercial software ABAQUS.By implementing empirically derived and physically measured pressures into the numerical models,the effects of the shock wave and bubble oscillation on the steel plate were investigated.Generally,the numerical results were in agreement with the experimental results.These results showed that the peak pressure of an UNDEX has a significant effect on the peak acceleration of the steel plate and that the impulse of the UNDEX pressure governs the peak strain of the steel plate.展开更多
This paper aims at investigation of the dynamic properties of gravity cage exposed to waves by use of a numerical model. The numerical model is developed, based on lumped mass method to set up the equations of motion ...This paper aims at investigation of the dynamic properties of gravity cage exposed to waves by use of a numerical model. The numerical model is developed, based on lumped mass method to set up the equations of motion of the whole cage; meanwhile the solutions of equations are solved by the Runge-Kutta-Vemer fifth-order and sixth-order method. Physical model tests have been carried out to examine the validity of the numerical model. The results by the numerical simulation agree well with the experimental data.展开更多
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma...Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.展开更多
The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Ba...The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.展开更多
A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume...A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume. The numerical results correspond well with the data sets from physical model test. The effect of weight of bottom frame, height of fish net and net shape on motion responses of fish cage and tension force on mooring lines is then analyzed. The results indicate that the vertical displacements of float collar and bottom frame decrease with the increase in the weight of bottom frame; the maximum tension force on mooring lines increases with the increasing weight of bottom frame. The inclination angles of float collar and bottom frame decrease with the increasing net height; the maximum tension force increases obviously with the increase of net height.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous tra...The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.展开更多
A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated b...A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated by arbitrary transducers into pieces under examination. The other simulates a testing experiment. The simulation approach is based on the model for the computation of the ultrasonic field in isotropic media radiated from actual NDT transducers. After the field is known, remaining to be modeled is the interaction between this field and the scatters (defect) and the echo structure. The model of beam-defect interaction is based on the Kirchhoff’s diffraction approximations theory applied to elastodynamics. We assumed that the incident wave fronts on the defect are plane in the case of a focused immersed transducer and material is isotropic and homogeneous. The simulating results demonstrate that the model in ultrasonic NDT of welds is practical in further research and useful in optimizing testi展开更多
In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is es...In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete.展开更多
The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the up...The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...展开更多
Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab ele...Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam(CFRD), subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method(FEM), with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes.展开更多
Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant e...Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.展开更多
The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/...The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.展开更多
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ...A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.展开更多
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Program of China Scholarship Council(202106430031)。
文摘Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.
文摘According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results.
基金The authors would like to thank Prof.Guowei Ma,Prof.Fang Wang,and Prof.Hongyuan Zhou for critically reading and revising the manuscript as well as for helpful discussions.This study has been financially supported by the State Key Program of National Natural Science Foundation of China(Grant No.51339006).
文摘Damage and threats to hydraulic and submarine structures by underwater explosions(UNDEXs)have raised much attention.The centrifuge model test,compared to prototype test,is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously.This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate.Nineteen methodical centrifuge tests of UNDEXs were conducted.The shock wave pressure,bubble oscillation pressure,acceleration and the strain of the air-backed steel plate were recorded and compared with numerical studies using the finite element analysis(FEA)commercial software ABAQUS.By implementing empirically derived and physically measured pressures into the numerical models,the effects of the shock wave and bubble oscillation on the steel plate were investigated.Generally,the numerical results were in agreement with the experimental results.These results showed that the peak pressure of an UNDEX has a significant effect on the peak acceleration of the steel plate and that the impulse of the UNDEX pressure governs the peak strain of the steel plate.
基金This paper is supported by the National 863 High Technology Development Plan Project (Grant No2006AA100301)the Programfor Changjiang Scholars and Innovative Research Teamin University (IRT-0420)
文摘This paper aims at investigation of the dynamic properties of gravity cage exposed to waves by use of a numerical model. The numerical model is developed, based on lumped mass method to set up the equations of motion of the whole cage; meanwhile the solutions of equations are solved by the Runge-Kutta-Vemer fifth-order and sixth-order method. Physical model tests have been carried out to examine the validity of the numerical model. The results by the numerical simulation agree well with the experimental data.
基金The authors acknowledge the support of the National Key Basic Research Project No.G1999043206“Advanced School Key Teachers Supporting Program”of the Ministry of Education,the National Climbing Program of China No.95-pre-25 and 95-pre-39the“100 Trans-Century Science and Technology Talented Persons Cultivating Program”Foundation of the Ministry of Land and Mineral Resources No.9808.
文摘Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.
基金financial support from the National Natural Science Foundation of China (Grant No. 51709025)the Chongqing Science and Technology Commission of China (Grant No. cstc2018jcyjAX0084, cstc2018jcyjAX0391 and cstc2016jcyjA0551)Open Research Fund of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources (Grant No. YK319006)
文摘The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51109187,51239002 and 51221961the Project form Zhoushan Science and Technology Bureau(Grant No.2013C41002)
文摘A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume. The numerical results correspond well with the data sets from physical model test. The effect of weight of bottom frame, height of fish net and net shape on motion responses of fish cage and tension force on mooring lines is then analyzed. The results indicate that the vertical displacements of float collar and bottom frame decrease with the increase in the weight of bottom frame; the maximum tension force on mooring lines increases with the increasing weight of bottom frame. The inclination angles of float collar and bottom frame decrease with the increasing net height; the maximum tension force increases obviously with the increase of net height.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金supported by the National Natural Science Foundation of China (No. 10772085)the Natural Science Foundation of Jiangsu Province (No. BK2007205)+1 种基金the Young Scholar Foundation of Nanjing University of Science and Technology (No. NJUST200504)the Qing Lan Project of Jiangsu Province
文摘The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.
基金supported by the Doctoral Degree Fund of Xi’an Jiaotong University
文摘A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated by arbitrary transducers into pieces under examination. The other simulates a testing experiment. The simulation approach is based on the model for the computation of the ultrasonic field in isotropic media radiated from actual NDT transducers. After the field is known, remaining to be modeled is the interaction between this field and the scatters (defect) and the echo structure. The model of beam-defect interaction is based on the Kirchhoff’s diffraction approximations theory applied to elastodynamics. We assumed that the incident wave fronts on the defect are plane in the case of a focused immersed transducer and material is isotropic and homogeneous. The simulating results demonstrate that the model in ultrasonic NDT of welds is practical in further research and useful in optimizing testi
基金The Open Research Fund of Key Laboratory of Highway Engineering of Sichuan Province of Southw est Jiaotong University (No.LHTE002201102)
文摘In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete.
文摘The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...
基金supported by the Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dams of the Ministry of Water Resources(Grant No.YK914019)the CRSRI Open Research Program(Grant No.CKWV2016376/KY)the National Natural Science Foundation of China(Grant No.51009055)
文摘Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam(CFRD), subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method(FEM), with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679052)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E2018026)the Defense Industrial Technology Development Program(Grant No.JCKY2016604B001)
文摘Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.
文摘The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.
文摘A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.