The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid cont...The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid content,with corrosion risk being prominent in oil processing.Taking the multi-medium flow corrosion risk of the hydrotreater heat exchanger pipeline in a petrochemical enterprise as the research object,based on the parameter characteristics of corrosive NH_(3) and HCl media under a high-temperature and high-pressure environment,the ammonium salt crystallization and deposition mechanism under multi-phase flow is revealed.The thermodynamic equilibrium curve is modified based on the thermodynamic principle and fugacity coefficient variation,and the prediction model of ammonium chloride crystallization in hydrotreater heat exchanger under high temperature and high pressure is constructed according to the modification.This study uses the mixture model,the flow-thermal coupling method,and the discrete phase model method to carry out the numerical simulation of multiphase flow and the numerical prediction of particle distribution characteristics in the heat exchanger pipeline of the hydrotreater heat exchange equipment,so as to realize the quantitative prediction of the particle crystallization deposition distribution in the pipeline.The results show that with the decrease of temperature,the crystallization occurs first on both sides of the center of the tube bundle,and more crystallization occurs in the lower half of the U-shaped tube,which may seriously lead to problems such as pipe blockage and under-deposit corrosion.展开更多
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f...A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.展开更多
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ...Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.展开更多
-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implo...-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers systematically. A theoretical simulation-prediction method, which is independent of experimental data, is developed in the paper and great improvement has been made on the topic. In the paper, various implosion situations have been simulated and predicted. Effects of a series of factors influencing implosion results and methods of reducing implosion danger have been analysed. The analysis results are of importance to underwater engineering practice.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.52176048,No.U1909216,No.51876194)the General Scientific Research Projects of the Department of Education of Zhejiang Province(No.Y202147969)the Key Research and Development Program of Zhejiang Province(No.2022C01115).
文摘The hydrotreater system heat exchanger is one of the main pieces of heat exchange equipment in petrochemical enterprises.In recent years,oil resources have shown a deterioration trend of high sulfur and high acid content,with corrosion risk being prominent in oil processing.Taking the multi-medium flow corrosion risk of the hydrotreater heat exchanger pipeline in a petrochemical enterprise as the research object,based on the parameter characteristics of corrosive NH_(3) and HCl media under a high-temperature and high-pressure environment,the ammonium salt crystallization and deposition mechanism under multi-phase flow is revealed.The thermodynamic equilibrium curve is modified based on the thermodynamic principle and fugacity coefficient variation,and the prediction model of ammonium chloride crystallization in hydrotreater heat exchanger under high temperature and high pressure is constructed according to the modification.This study uses the mixture model,the flow-thermal coupling method,and the discrete phase model method to carry out the numerical simulation of multiphase flow and the numerical prediction of particle distribution characteristics in the heat exchanger pipeline of the hydrotreater heat exchange equipment,so as to realize the quantitative prediction of the particle crystallization deposition distribution in the pipeline.The results show that with the decrease of temperature,the crystallization occurs first on both sides of the center of the tube bundle,and more crystallization occurs in the lower half of the U-shaped tube,which may seriously lead to problems such as pipe blockage and under-deposit corrosion.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BK2004406)Provincial Innovation Foundation for Graduate Students of Jiangsu, China(No.1223000053
文摘A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.
基金financially supported by the National Natural Science Foundation of China (Nos. 51221462, 51134022,51174203 and 51074156)the National Basic Research Program of China (No. 2012CB214904)China Postdoctoral Science Foundation (No. 2013M531430)
文摘Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.
文摘-By using gas-liquid two-phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers systematically. A theoretical simulation-prediction method, which is independent of experimental data, is developed in the paper and great improvement has been made on the topic. In the paper, various implosion situations have been simulated and predicted. Effects of a series of factors influencing implosion results and methods of reducing implosion danger have been analysed. The analysis results are of importance to underwater engineering practice.