期刊文献+
共找到8,630篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
1
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Numerical Simulation of a Viscoelastic Thinning Process for Preparing Flexible Glasses by Redrawing Method
2
作者 刘冰 袁坚 +5 位作者 GUO Zhenqiang ZHANG Qi HAN Zhuangzhuang TAN Jinqi TIAN Peijing ZHENG Weihong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期65-71,共7页
The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,t... The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced. 展开更多
关键词 flexible ultra-thin glass(UTG) numerical simulation down-draw forming redrawing method
下载PDF
Calculation of effective temperature for pavement rutting using numerical simulation methods 被引量:1
3
作者 祝谭雍 马涛 黄晓明 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期362-367,共6页
In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement wa... In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution. 展开更多
关键词 transient temperature field long-term rutting effective temperature numerical simulation finite element method
下载PDF
Numerical Simulation of Aerodynamic Interaction Effects in Coaxial Compound Helicopters 被引量:1
4
作者 Maosheng Wang Yanyang Wang +1 位作者 Yihua Cao Qiang Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1301-1315,共15页
The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which re... The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio. 展开更多
关键词 Coaxial compound helicopter aerodynamic interaction numerical simulation sliding mesh method
下载PDF
Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes
5
作者 J.C.González-Aguirre J.A.González-Vázquez +2 位作者 J.Alavez-Ramírez R.Silva M.E.Vázquez-Cendón 《Communications on Applied Mathematics and Computation》 2023年第2期885-922,共38页
Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ... Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data. 展开更多
关键词 Sediment transport Suspended load Bed load Finite volume method numerical simulation Well-balanced schemes
下载PDF
Paradigm of Numerical Simulation of SpatialWind Field for Disaster Prevention of Transmission Tower Lines
6
作者 Yongxin Liu Puyu Zhao +3 位作者 Jianxin Xu Xiaokai Meng Hong Yang Bo He 《Structural Durability & Health Monitoring》 EI 2023年第6期521-539,共19页
Numerical simulation of the spatial wind field plays a very important role in the study of wind-induced response law of transmission tower structures.A reasonable construction of a numerical simulation method of the w... Numerical simulation of the spatial wind field plays a very important role in the study of wind-induced response law of transmission tower structures.A reasonable construction of a numerical simulation method of the wind field is conducive to the study of wind-induced response law under the action of an actual wind field.Currently,many research studies rely on simulating spatial wind fields as Gaussian wind,often overlooking the basic non-Gaussian characteristics.This paper aims to provide a comprehensive overview of the historical development and current state of spatial wind field simulations,along with a detailed introduction to standard simulation methods.Furthermore,it delves into the composition and unique characteristics of spatial winds.The process of fluctuating wind simulation based on the linear filter AR method is improved by introducing spatial correlation and non-Gaussian distribution characteristics.The numerical simulation method of the wind field is verified by taking the actual transmission tower as a calculation case.The results show that the method summarized in this paper has a broader application range and can effectively simulate the actual spatial wind field under various conditions,which provides a valuable data basis for the subsequent research on the wind-induced response of transmission tower lines. 展开更多
关键词 Wind speed time series numerical simulation linear filter method NON-GAUSSIAN
下载PDF
Application of ALE Method on the Numerical Simulation of Reinforced Concrete Penetration 被引量:3
7
作者 武海军 黄风雷 +1 位作者 张庆明 曹德清 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期405-408,共4页
LS-DYNA program and the principle of ALE method were introduced, and the target features of the reinforced concrete penetration were analyzed by using the D material model and the ALE method. A numerical simulation ha... LS-DYNA program and the principle of ALE method were introduced, and the target features of the reinforced concrete penetration were analyzed by using the D material model and the ALE method. A numerical simulation has been done to show the penetration visually and veritably. The simulation results are analyzed carefully and explicitly prove their significance to the research of reinforced concrete penetration. 展开更多
关键词 ALE method numerical simulation PENETRATION reinforced concerete
全文增补中
Seismic Wavelet Analysis Based on Finite Element Numerical Simulation
8
作者 Junguo Du Jun Wu +2 位作者 Longjiang Jing Shuqin Li Qiang Zhang 《Journal of Geoscience and Environment Protection》 2023年第6期220-228,共9页
The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume... The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. . 展开更多
关键词 Finite Element method Seismic Wavelet numerical simulation Thin Interbed
下载PDF
Numerical simulation of the welding deformation for the side sill of the bogie frame based on local-global method 被引量:13
9
作者 杨鑫华 王春生 +2 位作者 常力 李娅娜 兆文忠 《China Welding》 EI CAS 2007年第4期11-16,共6页
Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstl... Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures. 展开更多
关键词 welding deformation numerical simulation local-global method
下载PDF
Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress 被引量:17
10
作者 YANG Jia-cai LIU Ke-wei +1 位作者 LI Xu-dong LIU Zhi-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3149-3162,共14页
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ... In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance. 展开更多
关键词 in-situ stress stress initialization method dynamic disturbance numerical simulation rock mass
下载PDF
Numerical Simulation of Independent Advance of Ore Breaking in the Non-pillar Sublevel Caving Method 被引量:21
11
作者 ZHOU Chuan-bo YAO Ying-kang +3 位作者 GUO Liao-wu YIN Xiao-peng FAN Xiao-feng SHANG Ying 《Journal of China University of Mining and Technology》 EI 2007年第2期295-300,共6页
The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/... The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models. 展开更多
关键词 non-pillar sublevel caving method independent advance of ore breaking numerical simulation model test
下载PDF
An explicit method for numerical simulation of wave equations 被引量:3
12
作者 Liu Heng Liao Zhenpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期17-28,共12页
In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models... In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas. 展开更多
关键词 wave equation numerical simulation explicit recursion formula finite element method
下载PDF
Energy method and numerical simulation of critical backfillheight in non-pillar continuous mining 被引量:2
13
作者 邓建 古德生 +1 位作者 李夕兵 彭怀生 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第4期847-851,共5页
Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influenc... Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influence the loss rate and dilution rate, etc, will determine whether the experimental research is successful or not. By employing energy method of limit analysis and finite element numerical simulation method, the critical backfill height was determined under the prerequisite condition of its stability, which put forward theoretical basis for reasonable and correct selection of backfill’s parameters. The result showed that the first backfill could not keep stable for NPCM, while the other was able to. 展开更多
关键词 CONTINUOUS MINING CRITICAL HEIGHT energy method numerical simulation
下载PDF
Numerical simulation of single bubble rising in shear-thinning fluids by level set method 被引量:4
14
作者 李少白 烟征 +2 位作者 李润东 王雷 栾敬德 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期1000-1006,共7页
The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated includ... The behavior of single bubble rising in quiescent shear-thinning tlmds was lnvestlgateO numerically by level set metnoa. number of bubbles in a large range of Reynolds number and Eotvos number were investigated including spherical, oblate and spherical. The bubble shape and drag coefficient were compared with experimental results. It is observed that the simulated results show good conformity to experimental results over a wide range of Reynolds number. In addition, the detailed flow field based on the reference coordinate system moving with the bubble is obtained, and the relationship among flow field, bubble shape and velocity is discussed. 展开更多
关键词 single bubble shear thinning fluid numerical simulation level set method
下载PDF
Numerical simulation of non-Archie electrophysical property of saturated rock with lattice Boltzmann method 被引量:2
15
作者 Yue Wenzheng Tao Guo +1 位作者 Liu Dongming Yang Wendu 《Petroleum Science》 SCIE CAS CSCD 2009年第1期24-28,共5页
The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock... The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation. 展开更多
关键词 Non-Archie relation digital core model lattice Boltzmann method numerical simulation rock physical experiment
下载PDF
A simple method of depressing numerical dissipation effects during wave simulation within the Euler model 被引量:1
16
作者 Zhe Hu Xiaoying Zhang +3 位作者 Weicheng Cui Fang Wang Xiaowen Li Yan Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第1期141-156,共16页
Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numeri... Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel. 展开更多
关键词 numerical dissipation numerical wave tank wave simulation numerical damping reduction finite difference method
下载PDF
Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method 被引量:2
17
作者 Jia Jinlong Zhao Yue +2 位作者 Dong Mingye Wu Aiping Li Quan 《China Welding》 EI CAS 2020年第2期1-8,共8页
Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A ... Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts. 展开更多
关键词 wire ARC ADDITIVE MANUFACTURE numerical simulation RESIDUAL stress and deformation TEMPERATURE function method
下载PDF
Numerical simulation of dynamic process for liquid film spreading by lattice Boltzmann method and its experimental verification 被引量:2
18
作者 刘邱祖 寇子明 韩振南 《Journal of Central South University》 SCIE EI CAS 2014年第8期3247-3253,共7页
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna... Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity. 展开更多
关键词 liquid film spreading contact angle lattice Boltzmann method (LBM) retraction phenomenon numerical simulation
下载PDF
A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media 被引量:1
19
作者 贺英 韩波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1495-1504,共10页
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi... In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media. 展开更多
关键词 porous media wavelet multiresolution method numerical simulation fluid-saturated finite-difference method
下载PDF
Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method 被引量:9
20
作者 Qi Zhao Andrea Lisjak +2 位作者 Omid Mahabadi Qinya Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期574-581,共8页
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ... Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydraulic fracturing(HF) numerical simulation Microseismic(MS) Finite-discrete element method(FDEM) Clustering Kernel density estimation(KDE)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部