期刊文献+
共找到657篇文章
< 1 2 33 >
每页显示 20 50 100
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
1
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D Numerical modeling
下载PDF
Surrogate modeling for unsaturated infiltration via the physics and equality-constrained artificial neural networks 被引量:1
2
作者 Peng Lan Jingjing Su Sheng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2282-2295,共14页
Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t... Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration. 展开更多
关键词 Richards equation(RE) Unsaturated infiltration Data-driven solutions Numerical modeling Machine learning(ML)
下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
3
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE Numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
下载PDF
Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage:CT-based and geomechanical modeling
4
作者 Valerii Khimulia Vladimir Karev +1 位作者 Yury Kovalenko Svyatoslav Barkov 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2982-2995,共14页
The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the res... The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the research included studying the dependence of rock permeability on the stress-strain state in the vicinity of the wells,and physical modeling of the implementation of the method of increasing the permeability of the wellbore zone-the method of directional unloading of the reservoir.The digital part of the research included computed tomography(CT)-based computer analysis of the internal structure,pore space characteristics,and filtration properties before and after the tests.According to the results of physical modeling of deformation and filtration processes,it is found that the permeability of rocks before fracture depends on the stress-strain state insignificantly,and this influence is reversible.However,when downhole pressure reaches 7-8 MPa,macrocracks in the rock begin to grow,accompanied by irreversible permeability increase.Porosity,geodesic tortuosity and permeability values were obtained based on digital studies and numerical modeling.A weak degree of transversal anisotropy of the filtration properties of rocks was detected.Based on the analysis of pore size distribution,pressure field and flow velocities,high homogeneity and connectivity of the rock pore space is shown.The absence of pronounced changes in pore space characteristics and pore permeability after non-uniform triaxial loading rocks was shown.On the basis of geometrical analysis of pore space,the reasons for weak permeability anisotropy were identified.The filtration-capacitance properties obtained from the digital analysis showed very good agreement with the results of field and laboratory measurements.The physical modeling has confirmed the efficiency of application of the directional unloading method for the reservoir under study.The necessary parameters of its application were calculated:bottomhole geometry,stage of operation,stresses and pressure drawdown value. 展开更多
关键词 Permeability anisotropy Reservoir porosity Rocks computed tomography(CT) Digital core analysis Filtration flow numerical modeling
下载PDF
Modeling and simulation of solvent behavior and temperature distribution within long stick propellants with large web thickness undergoing drying 被引量:2
5
作者 Enfa Fu Qianling Liu +3 位作者 Yu Luan Yao Zhu Weidong He Zhenggang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期42-55,共14页
Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin laye... Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness. 展开更多
关键词 Stick propellants DRYING Large web thickness 3D numerical modeling Heat transfer Solvent behavior
下载PDF
Exploring the contribution of oxygen reduction reaction to Mg corrosion by modeling assisted local analysis 被引量:1
6
作者 Cheng Wang Wen Xu +2 位作者 Daniel Höche Mikhail L.Zheludkevich Sviatlana V.Lamaka 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期100-109,共10页
Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process ... Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction. 展开更多
关键词 Local oxygen concentration Oxygen reduction reaction Mg corrosion NaCl electrolyte Hydrogen evolution reaction Numerical model
下载PDF
Numerical modeling of destress blasting for strata separation 被引量:1
7
作者 Petr Konicek Tuo Chen Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2238-2249,共12页
Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s... Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar. 展开更多
关键词 Rockburst hazard Destress blasting(DB) Strata separation Safety pillar Numerical modeling Fragmentation factor Stress dissipation factor Longwall mining
下载PDF
Effects of coal mining and tunnel excavation on groundwater flow system in karst areas by modeling:A case study in Zhongliang Mountain,Chongqing,Southwest China
8
作者 Qing-shan Li Xiao-bing Kang +1 位作者 Mo Xu Bang-yan Mao 《Journal of Groundwater Science and Engineering》 2023年第4期391-407,共17页
A karst groundwater system ranks among the most sensitive and vulnerable types of groundwater systems.Coal mining and tunnel excavation can greatly change the natural hydrogeological flow system,groundwater-dependent ... A karst groundwater system ranks among the most sensitive and vulnerable types of groundwater systems.Coal mining and tunnel excavation can greatly change the natural hydrogeological flow system,groundwater-dependent vegetation,soil,as well as hydrology of surface water systems.Abandoned coal mine caves and proposed highway tunnels may have significant influences on groundwater systems.This study employs MODFLOW,a 3D finite-difference groundwater model software,to simulate the groundwater system's response to coal mining and tunnel excavation impact in Zhongliang Mountain,Chongqing,from 1948 to 2035.The results show a regional decline in groundwater levels within the study area following mining and tunnel construction.The groundwater flow system in the study area evolves from the Jialing River groundwater flow system to encompass the Jialing River,Moxinpo highway tunnel,Moxinpo,and the Liujiagou coal mine cave groundwater flow systems between 1948 and 2025.With the completion of tunnel construction,the groundwater level at the top of the tunnel is gradually restored to the water level in the natural state.The model also predicts groundwater level variations between 2025 and 2035.The groundwater level will rise further initially,however,it may take about 10 years for the system to stabilize and reach a new equilibrium.In light of these findings,it is advised that changes in groundwater flow systems caused by tunnel construction should be modeled prior to the practical construction.This approach is crucial for evaluating potential engineering and environmental implications. 展开更多
关键词 Human activities Aquifer system Evolution of groundwater system Numerical modeling
下载PDF
Flow-Induced Clogging in Microfiltration Membranes: Numerical Modeling and Parametric Study
9
作者 Abdullah Rajah Al Qahtani 《Journal of Water Resource and Protection》 2023年第12期692-705,共14页
Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (... Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding. 展开更多
关键词 Microfiltration Membrane Parametric Study Computational Fluid Dynamic (CFD) Discrete Element Method (DEM) CFD-DEM modeling Membrane Clogging Pore Geometry Numerical modeling Cake Layer Clogging Indicator
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
10
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
11
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change GRANITE
下载PDF
Pollution source identification methods and remediation technologies of groundwater: A review
12
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 Groundwater pollution Identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology Hydrogeological conditions Hydrogeological survey engineering
下载PDF
Hydrodynamic Assessment of A New Nature-Based Armour Unit on Rubble Mound Breakwater for Coastal Protection
13
作者 Ehsan SAFA Alireza MOJTAHEDI +1 位作者 Abdolmajid MOHAMMADIAN Mohamad Ali Lotfollahi YAGHIN 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期439-452,共14页
This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details... This research proposes a novel nature-based design of a new concrete armour unit for the cover layer of a rubblemoundbreakwater. Armour units are versatile with respect to shape, orientation, surface condition details, and porosity.Therefore, a detailed analysis is required to investigate the exact state of their hydraulic interactions and structuralresponses. In this regard, the performance results of several traditional armour units, including the Antifer cube,Tetrapod, X-block and natural stone, are considered for the first step of this study. Then, the related observed resultsare compared with those obtained for a newly designed (artificial coral) armour unit. The research methodology utilizesthe common wave flume test procedure. Furthermore, several verified numerical models in OpenFOAM code areused to gain the extra required data. The proposed armour is configured to provide an effective shore protection as anenvironmental-friendly coastal structure. Thus it is designed with a main trunk including deep grooves to imitate thetypical geometry of a coral type configuration, so as to attain desirable performance. The observed results and ananalytic hierarchy process (AHP) concept are used to compare the hydraulic performance of the studied traditionaland newly proposed (artificial coral) armour units. The results indicate that the artificial coral armour unit demonstratesacceptable performance. The widely used traditional armour units might be replaced by newer designs for betterwave energy dissipation, and more importantly, for fewer adverse effects on the marine environment. 展开更多
关键词 rubble mound breakwater hydraulic interaction armour unit analytic hierarchy process numerical model
下载PDF
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
14
作者 Zhao-yang Yin Qi-chi Le +3 位作者 Yan-chao Jiang Da-zhi Zhao Qi-yu Liao Qi Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u... A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20). 展开更多
关键词 dual-frequency ultrasonic numerical model acoustic pressure spatial interaction magnesium alloy
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
15
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey Multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
16
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
17
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer Numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid
18
作者 Yuanyong Gao Fujiang Yu +2 位作者 Cifu Fu Jianxi Dong Qiuxing Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期40-47,共8页
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me... Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects. 展开更多
关键词 typhoon-induced storm surge numerical model GPU acceleration unstructured grid spherical centroidal Voronoi tessellation(SCVT)
下载PDF
Investigation of Maxima Assumptions in Modelling Tropical Cyclone- Induced Hazards in the South China Sea
19
作者 WEN Ze-guo WANG Fu-ming +1 位作者 WAN Jing YANG Fan 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期491-504,共14页
The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption ass... The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption assumes thatjoint N-year extreme wind and wave events can be independently estimated and subsequently combined. The secondone assumes peak wind and waves can be modelled as occurring simultaneously during a tropical cyclone (TC) event.To better understand the potential TC activity, a set of 10000 years synthetic TC events are generated. The wind fieldmodel and the Mike 21 spectral wave model are employed to model the TC-induced hazards. Subsequently, theeffect of the assumptions is evaluated by analyzing the peak structural response of both monopile and semisubmersibleoffshore wind turbines during TC events. The results demonstrate that the examined assumptions are generally accurate.By assessing the implications of these assumptions, valuable insights are obtained, which can inform andimprove the modelling of TC-induced hazards in the SCS region. 展开更多
关键词 tropical cyclone numerical wave modelling hazards offshore wind turbines structural response
下载PDF
Experimental and numerical investigation on alternatives to sandy gravel
20
作者 V.Denefeld H.Aurich 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期130-141,共12页
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe... The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel. 展开更多
关键词 Improvised explosive device(IED) Specific impulse Momentum transfer Sandy gravel Glass spheres Numerical model Soil moisture
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部