期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
三种坚果类食品壳提取物的抑菌性比较研究 被引量:7
1
作者 李军红 田胜尼 陆晓宇 《食品科学》 EI CAS CSCD 北大核心 2008年第8期70-73,共4页
本实验采用滤纸片法探讨了花生、板栗和葵花子壳乙醇提取物对六种食品中常见污染菌的抑菌性,不同pH下抑菌活性的变化、提取物热稳定性和对食品防腐作用研究等。结果表明:三种提取物对六种试验菌均有很强的抑制作用,它们的抑菌性受pH影... 本实验采用滤纸片法探讨了花生、板栗和葵花子壳乙醇提取物对六种食品中常见污染菌的抑菌性,不同pH下抑菌活性的变化、提取物热稳定性和对食品防腐作用研究等。结果表明:三种提取物对六种试验菌均有很强的抑制作用,它们的抑菌性受pH影响很大,且抑菌性有很好的热稳定性。防腐实验研究表明,在48h内它们对3种试验食品的抑菌率大都在80%以上,最高达94.20%。它们能很好地保存食品的风味。 展开更多
关键词 坚果食品 果壳 乙醇提取物 抑菌性
下载PDF
新疆部分特色林果果壳的抗菌活性研究 被引量:3
2
作者 周莲洁 贺转转 +1 位作者 古丽斯玛依.艾拜都拉 吴玲玲 《生物技术通讯》 CAS 2010年第6期855-856,860,共3页
目的:研究新疆特色林果核桃、巴达木果壳乙醇提取物的抑菌特性。方法:用滤纸片法检验果壳乙醇提取物对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和变形杆菌的抑菌活性,通过液体培养基稀释法测定最低抑菌浓度。结果:巴达木乙醇提取物(25%... 目的:研究新疆特色林果核桃、巴达木果壳乙醇提取物的抑菌特性。方法:用滤纸片法检验果壳乙醇提取物对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和变形杆菌的抑菌活性,通过液体培养基稀释法测定最低抑菌浓度。结果:巴达木乙醇提取物(25%乙醇提取10 h)对大肠杆菌有较好的抑菌效果,最低抑菌浓度(MIC)为25%;核桃乙醇提取物(25%乙醇提取24 h)对大肠杆菌有较好的抑菌效果,MIC为6.25%。结论:核桃、巴达木果壳乙醇提取物对受试菌具有较好的抑菌效果,为进行大规模开发利用提供了有效依据。 展开更多
关键词 果壳 提取物 抗菌活性 最低抑菌浓度
下载PDF
Elaboration and Characterization of a Hybrid Composite Material with Two Particles of the Same Size: Coco Shells and Palm Shells 被引量:1
3
作者 Pierre Marcel Anicet Noah Ebanda Fabien Betene +3 位作者 Suzie Viviane Obame Beassoum Allasra Martin Christian Bindjeme Ateba Atangana 《Open Journal of Composite Materials》 2020年第4期77-91,共15页
This work aims to develop and characterize a hybrid composite material with two particles of the same size. As reinforcing particles, the hulls of palm nuts and coconut are chosen. Hybrid composite material composites... This work aims to develop and characterize a hybrid composite material with two particles of the same size. As reinforcing particles, the hulls of palm nuts and coconut are chosen. Hybrid composite material composites in the form of specimens were produced by molding at 10%, 20% and 30% mass fractions in various sizes (0.63<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm and 2.5</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm). The samples were physically characterized (water absorption rate, moisture content, actual, theoretical and apparent density) and mechanical in 3-point flexion. The main results are: the highest and minimum water absorption rate are respectively 3.57% and 0.67% for respectively particle sizes 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C30) and 0.67% in the size of 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C10). The moisture content varies from 0.64 to 7.14% respectively for the P20C20 (2.5 mm) and P10C30 (2.5 mm) samples. The maximum and minimum real density are 1340,518</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and 1055.981</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, for respectively the composites of particles sizes 1.25</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (P20C10) and 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mm (sample P20C20). The minimum real density is Its </span><span><span style="font-family:Verdana;">maximum theoretical density is 1194.949 Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> (for samples P20C10,</span></span><span style="font-family:Verdana;"> P10C10 and P30C10);however, the minimum is 1189.966 Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> (P10C20 and P20C20). The bulk density varies from 933.28</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> to 1176.1</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, respectively, in sizes from 2.5</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (P10C30) to 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mm (for P10C30). As for the mechanical characteristics, the Modulus of Elasticity (MOE) varies from 25.664 GPa to 25.759 GPa, respectively, the samples P10C10 (1.25 mm) and P10C20 (2.5 mm). The MOE values describe a parabola whose peak is reached when the palm shell loads are 20%, that is to say P20C10, whatever the particle size distribution. In resilience, samples with small particles are more resilient with a maximum value of 22.49 J/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and a minimum value of 4.45 J/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> to verify the principles of Hall-Petch’s law.</span></span> 展开更多
关键词 Composite Hybrid Young’s Modulus POLYESTER PARTICLES hulls of Palm nuts hulls of Coconut
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部