期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize
1
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 MAIZE nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
Effect of nitrogen and phosphorus addition on leaf nutrient concentrations and nutrient resorption efficiency of two dominant alpine grass species 被引量:1
2
作者 LIU Yalan LI Lei +2 位作者 LI Xiangyi YUE Zewei LIU Bo 《Journal of Arid Land》 SCIE CSCD 2021年第10期1041-1053,共13页
Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to ... Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems. 展开更多
关键词 leaf nutrient concentration nutrient resorption efficiency leaf N:P ratio N addition P addition Seriphidium rhodanthum Stipa capillata
下载PDF
Effects of forest canopy density and epixylic vegetation on nutrient concentrations in decaying logs of a subalpine fir forest
3
作者 Zhuang Wang Wanqin Yang +6 位作者 Bo Tan Qin Wang Lifeng Wang Chenhui Chang Rui Cao Yurui Jiang Jörg Müller 《Forest Ecosystems》 SCIE CSCD 2022年第5期666-673,共8页
Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is un... Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is unclear how the forest canopy density and epixylic vegetation growth affect the nutrient concentrations in deadwood.Methods:We measured the concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca),sodium(Na),magnesium(Mg),and manganese(Mn)in experimentally exposed decaying logs placed in gaps,at the edge of gaps,and under the closed canopy during a four-year decomposition experiment in a Subalpine Faxon fir forest(Abies fargesii var.faxoniana)on the eastern Qinghai-Tibetan Plateau,China.To assess the effect of the epixylic vegetation,we experimentally removed it from half of the logs used in the study.Results:Under open canopy conditions in the gap and at the edge,the concentrations for most of the nutrients in the bark and the highly decayed wood were lower than under the closed canopy.The effect of the epixylic treatment on nutrient concentrations for all but K and Na in barks varied with the decay classes.Significantly lower concentrations of N,P,Ca,and Mn following the removal of epixylic vegetation were observed in the wood of decay class IV.Epixylic vegetation significantly increased most nutrient concentrations for decaying barks and wood under open canopy conditions.In contrast,epixylic vegetation had no or minimal effects under the closed canopy.Conclusions:Forest canopy density and epixylic vegetation significantly alter the nutrient concentrations in decaying logs.Open canopies likely accelerate the rate of nutrient cycling between the epixylic vegetation and decaying logs in subalpine forests. 展开更多
关键词 Coarse woody debris Natural disturbance Forest canopy density Epixylic vegetation nutrient concentrations
下载PDF
Eucalyptus grandis plantations:effects of management on soil carbon,nutrient contents and yields 被引量:4
4
作者 Diego Martin Sandoval Lopez Marcelo Fabian Arturi +2 位作者 Juan Francisco Goya Carolina Alejandra Perez Jorge Luis Frangi 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第2期601-611,共11页
The expansion of fast-growing tree plantations is a worldwide process,with consequences on soil fertility and soil carbon storage.Disparate results were found on the effects of afforestation with Eucalyptus on soil ca... The expansion of fast-growing tree plantations is a worldwide process,with consequences on soil fertility and soil carbon storage.Disparate results were found on the effects of afforestation with Eucalyptus on soil carbon and other nutrient contents.These discrepancies are usually caused by differences in climate,land use history,soil texture as well as by management related factors such as plantation age,number of rotations,method of establishment(plantation or coppice),harvest residue management and soil preparation.We studied the effect of plantation age,number of rotations,and method of establishment on soils and plant nutrient concentrations in Eucalyptus grandis plantations in NE Argentina on different textured soils.We also determined if yields changed with nutrient variations in soils,and compared soils under plantations to soils under grasslands they replaced.Thirty-one E.grandis stands of different ages,number of rotations and method of establishment were evaluated as well as eight grassland sites.Levels of carbon,nitrogen,phosphorus,potassium,calcium and magnesium were determined for soils and plants.Soil carbon and nitrogen decreased over the number of rotations and were more pronounced in soils with 50-60%sand than soils with>75%sand.Coppice stands showed higher soil carbon and nitrogen levels than plantations,suggesting a negative effect of site preparation before planting on soil nutrient conservation,especially in fine-textured soils.Foliar nutrient concentrations did not follow the trends observed for soil nutrients nor did they reflect nutrient limitations.There was no evidence of decreased yields over successive rotations.Soil carbon and nitrogen contents decrease when grasslands are replaced by E.grandis plantations,and therefore a yield limitation may occur in a medium to long-term frame,especially in stands re-established for short-rotation management.Harvest residue management and site preparation must be specifically designed for improving soil nutrient management. 展开更多
关键词 Soil texture Grasslands Foliar nutrient concentrations Successive harvest COPPICE Eucalyptus grandis
下载PDF
Effects of Microbial Inoculants on Nutrient Availability and Rice Yield 被引量:2
5
作者 Li Song Sun Tao +1 位作者 Liu Xiao-jie Xu Jing-gang 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第1期27-34,共8页
Under fi eld conditions,an experiment was conducted to study the effects of ammonifi cation bacteria,potassium bacteria and phosphorus bacteria on nutrient availability in soil and yield of rice in the cold region of ... Under fi eld conditions,an experiment was conducted to study the effects of ammonifi cation bacteria,potassium bacteria and phosphorus bacteria on nutrient availability in soil and yield of rice in the cold region of China and compared to the conventional fertilization.Results showed that DF1P2 treatment(ammonifi ers 1.5×10~8 cfu·m^(-2),phosphorus bacteria 1.5×10~8 cfu·m^(-2),and potassium bacteria 1.5×10~8 cfu·m^(-2))increased available nutrient concentrations in soil,increased the concentrations of N,P,and K in plant organs and increased the rice yield and was the most signifi cantly among all the treatments.This treatment could be recommended as the best suitable biological fertilizer application rate for the rice production in the cold region of China. 展开更多
关键词 Microbial inoculants soil nutrient concentration plant nutrient uptake rice yield
下载PDF
Effects of Sea Level Variation on Biological and Chemical Concentrations in a Coastal Upwelling Ecosystem
6
作者 Marilia M.F.de Oliveira Gilberto C.Pereira +1 位作者 Jorge L.F.de Oliveira Nelson F.F.Ebecken 《Journal of Environmental Protection》 2013年第11期61-76,共16页
Oscillations in sea level due to meteorological forces related to wind and pressure affect the regular tides and modify the sea level conditions, mainly in restricted waters such as bays. Investigations surrounding th... Oscillations in sea level due to meteorological forces related to wind and pressure affect the regular tides and modify the sea level conditions, mainly in restricted waters such as bays. Investigations surrounding these variations and the biological and chemical response are important for monitoring coastal regions mainly where upwelling shelf systems occur. A spatial and temporal database from Quick Scatterometer satellite vector wind, surface stations from the Southeast coast of Brazil and surface seawater data collected in Anjos Bay, Arraial do Cabo city, northeast of Rio de Janeiro State were used to investigate the meteorological influences in the variability of the dissolved oxygen, nutrients, meroplankton larvae and chlorophyll-a concentrations. Multivariate statistical approaches such as Principal Component Analysis (PCA) and Clustering Analysis (CA) were applied to verify spatial and temporal variances. A correlation matrix was also verified for different water masses in order to identify the relationship between the above parameters. A seasonal variability of the meteorological residual presents a well-defined pattern with maximum peaks in autumn/winter and minimum during spring/summer with negative values, period of occurrence of upwelling in this region. This lowering of the sea level is in accordance with the increasing of nutrients and meroplankton larvae for the same period. CA showed six groups and an importance of the zonal and meridional wind variability, including these variables in a single cluster. PCA retained eight components, explaining 64.10% of the total variance of data set. Some clusters and loadings have the same variables, showing the importance of the sea-air interaction. 展开更多
关键词 Meroplankton Larvae nutrient concentrations Coastal Waters Brazilian Upwelling
下载PDF
Temporal and Spatial Distribution of Nutrients and HABs at Coastal Water of Kota Belud, Sabah 被引量:2
7
作者 Sujjat Al Azad Sitti Raehanah Muhamad Shaleh Tan Kar Soon 《Advances in Bioscience and Biotechnology》 2016年第5期233-242,共10页
A study was carried out to determine the temporal and spatial distribution of nutrients and Harmful Algal Blooming species (HABs) to establish the relationship between nutrient concentrations and HABs density in the c... A study was carried out to determine the temporal and spatial distribution of nutrients and Harmful Algal Blooming species (HABs) to establish the relationship between nutrient concentrations and HABs density in the coastal water of Kota Belud, Sabah, Malaysia. Eight stations were set up in four transects (each transect had two stations;one 500 meters seawards from shoreline, and another five kilometers seawards from shoreline) along the Kota Belud coastal area. Phytoplankton samples, water samples and in situ environmental parameters were collected during dry and wet seasons. Altogether nine HABs species were identified from the study area, where six species (Pyrodinium bahamense, Prorocentum micans, Neoceratium furca, Prorocentum sigmoides, Dinophysis caudate, and Neoceratium fursus) belonged to Dinophyceae and three species (Thalassionema nitzchoioides, Chatoceros affinis, Rhizosolenia sp.) belonged to Bacillariophyceae. Among nine species, Chatoceros affinis was the most abundance composed of 80.6% of total species recorded from all stations during study period. Among the toxic producing Dinoflagellate, Pyrodinium bahamense bloom (>10<sup>3</sup> cells/l) was observed during study period. Trong linear relationship (r<sup>2</sup> = 0.80) was observed between the cell density and concentration of nitrate nitrogen. Relationship between cell density and phosphate phosphorus was poor (r<sup>2</sup> = 0.51). The study showed that increasing in nutrient concentrations resulted in the increasing of HABs density. Nitrate was seen to be more important than phosphate in Kota Belud water as limiting factor of the growth of HABs. 展开更多
关键词 HABs Cell Density NITRATE PHOSPHATE Kota Belud’s Coastal Water nutrients concentration PHYTOPLANKTON
下载PDF
Effects of strain,nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater 被引量:1
8
作者 Zhang Li Lu Haifeng +7 位作者 Yuanhui Zhang Ma Shanshan Li Baoming Liu Zhidan Duan Na Liu Minsheng Si Buchun Lu Jianwen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期194-204,共11页
Cultivating microalgae in post hydrothermal liquefaction wastewater(PHWW)offers many benefits,including nutrients recovery and reuse,wastewater purification and biomass production.However,the high nutrients concentrat... Cultivating microalgae in post hydrothermal liquefaction wastewater(PHWW)offers many benefits,including nutrients recovery and reuse,wastewater purification and biomass production.However,the high nutrients concentration and toxic substances in PHWW undermine the efficiency of biomass production and nutrient recovery.This study aimed to investigate the effects of the microalgae strains,initial nutrients concentrations and inoculum sizes on biomass production and nutrient recovery using PHWW as the cultivation medium.Results indicated that both biomass production and nutrients recovery were successfully improved by using the screened microalgae strain at the desirable initial nutrient concentration with the suggested algae inoculum size.Chlorella vulgaris 1067 probably demonstrated the strongest tolerance ability among the five microalgae strains screened,and performed well in the diluted PHWW,of which initial TN concentration was approximately 500 mg/L.The desirable inoculum size was determined to be 0.103-0.135 g/L.The biomass daily productivity was increased by 15.67-fold(reached 0.13 g/(L·d)).With the above optimal conditions,high biomass production and nutrient recovery from the PHWW to produce microalgae biomass for bioenergy production were achieved. 展开更多
关键词 post hydrothermal liquefaction wastewater microalgae strain screening inoculum size initial nutrient concentration nutrient recovery biomass production
原文传递
Relationship between Microbial Community Characteristics and Flooding Efficiency in Microbial Enhanced Oil Recovery
9
作者 Gangzheng Sun Jing Hu +6 位作者 Qiongyao Chen Zihui Chen Weidong Wang Qin Qian Feng Han Ling Li Yuesheng Li 《Advances in Bioscience and Biotechnology》 2022年第5期242-253,共12页
Microbial enhanced oil recovery (MEOR) is the research focus in the field of energy development as an environmentally friendly and low cost technology. MEOR can bes divided into indigenous microbial oil recovery and e... Microbial enhanced oil recovery (MEOR) is the research focus in the field of energy development as an environmentally friendly and low cost technology. MEOR can bes divided into indigenous microbial oil recovery and exogenous microbial oil recovery. The ultimate goal of indigenous microbial flooding is to enhance oil recovery via stimulation of specific indigenous microorganisms by injecting optimal nutrients. For studying the specific rule to activate the indigenous community during the long-term injection period, a series of indigenous displacement flooding experiments were carried out by using the long-core physical simulation test. The experimental results have shown that the movement of nutrients components (i.e., carbon/nitrogen/phosphorus) differed from the consumption of them. Moreover, there was a positive relationship between the nutrients concentration and bacteria concentration once observed in the produced fluid. And the trend of concentration of acetic acid was consistent with that of methanogens. When adding same activators, the impacts of selective activators to stimulate the indigenous microorganisms became worse along with the injection period, which led to less oil recovery efficiency. 展开更多
关键词 Microbial Enhanced Oil Recovery (MEOR) nutrient concentration Bacterial concentration METHANOGENS Microbial Activity
下载PDF
Litter mixing significantly affects decomposition in the Hulun Buir meadow steppe of Inner Mongolia, China 被引量:6
10
作者 Caihong Zhang Shenggong Li +2 位作者 Leiming Zhang Xiaoping Xin Xingren Liu 《Journal of Plant Ecology》 SCIE 2014年第1期59-67,共9页
Aims We explored the decomposition rates of single-and mixed-species litter,the litter-mixing effect and the effect of component litters in a mixture on decomposition.Methods In a litter bag experiment,shoot litters f... Aims We explored the decomposition rates of single-and mixed-species litter,the litter-mixing effect and the effect of component litters in a mixture on decomposition.Methods In a litter bag experiment,shoot litters from two dominant grasses(Leymus chinensis and Stipa baicalensis)and one legume(Melissitus ruthenica)were decomposed separately and as a mixture from May 2010 to September 2011 in the Hulun Buir meadow steppe of Inner Mongolia,China.We separated the litter mixture into its individual component litters(i.e.the different single-species litters)and analyzed the changes in litter mass remaining and litter nitrogen(N)remaining during single-and mixed-species litter decomposition.Important Findings(i)Litter mixing had significant positive effects on litter decomposition.The litter-mixing effect was strongest for the mixture of S.baicalensis and L.chinensis litters,followed by the mixture of S.baicalensis and M.ruthenica litters.(ii)Single-species component litters decomposed faster in the mixtures than separately(positive effect),but these effects were not significant for legume species M.ruthenica litter.Relative to single-species litter decomposition,the decomposition rates of the two grass(S.baicalensis and L.chinensis)litters significantly increased when they were mixed with each other or with M.ruthenica litter.(iii)For each species litter type,the percentage of litter N remaining during decomposition(NR)differed between the single-species litter and mixed litter treatments.The NR of S.baicalensis litter was higher when it was decomposed in the mixture than in isolation.However,the NR of L.chinensis litter was lowest in its mixture with M.ruthenica among the treatments.Regardless of its decomposition in the mixture or in isolation,the NR of M.ruthenica litter varied little among treatments.There was a significant positive relationship between the NR and percentage of initial litter mass remaining in both the single litter and mixed litter treatments.These results suggest that N transfer may happen among component litters in mixture and further affect the decomposition. 展开更多
关键词 non-additive effect interaction strength single litter mixed litter nutrient concentration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部