Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nu...Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.展开更多
AIM:To assess the relation between nutrient patterns and cataract risk.METHODS:This is a hospital-based case-control study with 97 cataract patients and 198 matched controls.Dietary consumption was collected through...AIM:To assess the relation between nutrient patterns and cataract risk.METHODS:This is a hospital-based case-control study with 97 cataract patients and 198 matched controls.Dietary consumption was collected through a valid food frequency questionnaire(FFQ).Nutrient patterns were detected by applying factor analysis.Unconditional logistic regression models were used to estimate odds ratio(ORs) and 95%CIs.RESULTS:We extracted 5 main nutrient patterns.Factor 1 included niacin,thiamin,carbohydrates,protein,zinc,vitamin B6 and sodium(sodium pattern).Factor 2 was characterized by oleic acid,monounsaturated fats,polyunsaturated fats,linoleic acid,trans fatty acid,linolenic acid,vitamin E and saturated fats(fatty acid pattern).The third factor represented high intake of vitamin B12,vitamin D,cholesterol and calcium(mixed pattern).The 4^(th) pattern was high in intake of beta and alpha carotene,vitamin A and vitamin C(antioxidant pattern).Finally,the 5^(th) pattern loaded heavily on docosahexaenoic acid(DHA) and eicosapentaenoic acid(EPA)(omega-3 pattern).In crude and multivariate analysis,the sodium pattern was associated with increased risk of cataract(OR=1.97,95%CI:1.09-3.96).The fatty acid pattern elevated the risk of cataract(OR=1.94,95%CI:1.1-3.86).Antioxidant pattern was associated with a significant 79% reduced risk(2^(nd) category compared with the 1st).Omega-3 pattern was significantly negatively associated with risk of cataract(P=0.04).CONCLUSION:These findings imply that nutrient patterns reflecting a combined consumption of nutrients might be important in the etiology of cataract.Additional studies with more efficient designs are warranted to confirm our findings.展开更多
Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
Soil cover disturbances have a direct effect on biogeochemistry, potentially enhancing nutrient loss, land degradation and associated changes in ecosystem services and livelihood support. The objective of this study w...Soil cover disturbances have a direct effect on biogeochemistry, potentially enhancing nutrient loss, land degradation and associated changes in ecosystem services and livelihood support. The objective of this study was to assess how canopy affected throughfall chemistry and how hydrology affected stream nutrient load responses in two watersheds dominated by native old-growth evergreen rainforest (NF) and exotic plantation of Eucalyptus nitens (EP), located at the Coastal mountain range of southern Chile (40°S). We measured nitrogen (NO3-N, NH4-N, Organic-N, Total-N) and total phosphorus (Total-P) at catchment discharge, and δ18O in throughfall precipitation and stream discharge in both catchments, in order to separate throughfall (or new water) contributions during storm events. It was hypothesized that all nutrients showed an increase in concentration as discharge increased (or enhanced hydrological access), in EP;but not in NF. Our results indicated that Organic-N, Total-N and Total-P concentrations were positively related to discharge. However, NO3<sup style="margin-left:-7px;">--N showed a negative correlation with catchment discharge. Organic-N and Total-P showed a flush during storm events;the opposite was observed for NO3<sup style="margin-left:-7px;">--N. However, this behavior suggested that NO3<sup style="margin-left:-7px;">--N was being retained by charged particles or soil micro biota, whether Organic-N was flushed as it was more concentrated in big pore water that was not tightly attached, compared with NO3<sup style="margin-left:-7px;">--N.展开更多
Nutrient application systems are designed to apply a relatively uniform amount of a fertilizer to agricultural fields. However, considerable variation in soil texture and other characteristics often occurs within and ...Nutrient application systems are designed to apply a relatively uniform amount of a fertilizer to agricultural fields. However, considerable variation in soil texture and other characteristics often occurs within and across production fields, which could have a major impact on fertilizer management strategies. Therefore, uniform application of a fertilizer over the entire field can be both costly and environmentally unsound. Due to their rugged and fool-proof design, crankshaft type piston pumps are widely used in agriculture. The on-the-go outlet flow of these pumps can only be varied by changing the drive shaft speed for each pump stroke setting. But only a limited range of flow rates can be achieved by changing the drive shaft speed. There is a need for an electronic controller, which can adjust the pump stroke on-the-go, for real-time, variable-rate application of crop nutrients. The Clemson “Electro-me-chanical controller for adjusting pump stroke on-the-go” was designed to replace the current manual stroke adjustment system on positive displacement piston pumps. This affordable system can be retrofitted on most John Blue - piston pumps for real-time adjustment of the pump stroke and can be controlled using pre-described position sequences (map-based) or real-time sensor commands (such as optical, pressure, and flow sensors) combined with fertilizer calculation algorithms. In addition, it can adjust pump stroke manually, using an eclectic dial from the tractor’s cab.展开更多
Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that suppo...Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations(+N+P,-N+P, +N-P, and-N-P), with an 18-month whole-ecosystem experiment in eight ~800-m^2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P,-N+P, +N-P, and-N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in-N+P and 2 months in-N-P in the tank experiment, and after 3 months in-N?+P and ~3 months in-N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.展开更多
The non-point source pollution arising from soil erosion is one of the main reasons for the deterioration of the water quality of the Taihu Lake Basin. Forest plays an important role in controlling soil erosion and re...The non-point source pollution arising from soil erosion is one of the main reasons for the deterioration of the water quality of the Taihu Lake Basin. Forest plays an important role in controlling soil erosion and reducing nutrient loss. Based on the survey data on forest resources in Anji County, we estimate the amount of soil erosion and nutrient loss of nitrogen and phosphorus reduced by forest, using soil erosion modulus method and soil nutrient content. In accordance with the degradation coefficient of pollutant and regional compensation standards of environmental resources, we assess the ecological benefits of forest function in reducing nutrient loss of nitrogen and phosphorus in Anji County. The results show that the forest in Anji County can reduce the soil erosion amount at 1.51 million t annually on the average, so as to control the nutrient loss of 1 409 t of total nitrogen and 577 t of total phosphorus in soil, equivalent to annually avoiding the flow of 824 t of total nitrogen and 410 t of total phosphorus into river water; this ecological service function can make forests in Anji County get 92.55 million yuan of ecological compensation funds (about 688 yuan/hm2·a), equivalent to 15 times of the current ecological compensation standard (47 yuan/hm2). The study reveals the importance of forest function in controlling soil erosion and nutrient loss in the upper reaches of Taihu Lake Basin to water environment protection in the basin, conducive to carrying out pollution control and protection work of the water environment in the basin.展开更多
An artificial aquatic food web (AAFW) system was designed to remove the non-point source pollutants in eutrophic Jiyu river. A certain amount of Scenedesmus obliquus and Daphnia pulex was cultured in the system for th...An artificial aquatic food web (AAFW) system was designed to remove the non-point source pollutants in eutrophic Jiyu river. A certain amount of Scenedesmus obliquus and Daphnia pulex was cultured in the system for the control of serious cyanobacterial bloom. The AAFW system was a continuous-flow system including one storage basin of 3 m<sup>3</sup> capacity with polluted river water (the total nitrogen-TN: 4.49 mg⋅l<sup>-1</sup><sup></sup>;the total phosphorus-TP: 0.192 mg⋅l-1</sup></sup><sup></sup>), one phytoplankton tank of 3 m<sup>3</sup> capacity with an initial concentrations of S. obliquus about 5.8 × 10<sup>3</sup> ind⋅l-1</sup><sup></sup>, and one zooplankton growth chamber of 1.5 m<sup>3</sup> capacity with an initial abundance of D. pulex about 22.5 ind⋅l-1</sup></sup>. The system was optimized by setting hydraulic retention time of phytoplankton tank as 5 days and the experiments were operated for 45 days. Compared with the polluted river, TN and TP were removed about 28% and 47% by the AAFW system, respectively. The biomass of phytoplankton decrease from 6.33 mg⋅l-1<sup></sup> to 1.48 mg⋅l-1</sup><sup></sup> and the percentage of cyanobacteria decrease from 43.93% to 2.36%, the biomass of Crustacean zooplankton increase from 0.34 mg⋅l-1</sup></sup><sup></sup> to 1.53 mg⋅l-1</sup></sup><sup></sup> and the percentage of D. pulex increase from 19.19% to 57.62%. Our results indicated that the AAFW system not only is an efficient, flexible system for reducing nutrient levels in tributary rivers, but also has an ability to control the cyanobacteria bloom and rebuilding the aquatic ecosystem from the polluted river water.展开更多
基金Supported by Science and Technology Innovative Leading Fund of Ningxia Academy of Agriculture and Forestry Sciences(NKYZ-16-1101)~~
文摘Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.
基金Supported by the National Nutrition and Food Technology Research Institute(NNFTRI)of Shahid Beheshti University of Medical Sciences,Tehran,Iran
文摘AIM:To assess the relation between nutrient patterns and cataract risk.METHODS:This is a hospital-based case-control study with 97 cataract patients and 198 matched controls.Dietary consumption was collected through a valid food frequency questionnaire(FFQ).Nutrient patterns were detected by applying factor analysis.Unconditional logistic regression models were used to estimate odds ratio(ORs) and 95%CIs.RESULTS:We extracted 5 main nutrient patterns.Factor 1 included niacin,thiamin,carbohydrates,protein,zinc,vitamin B6 and sodium(sodium pattern).Factor 2 was characterized by oleic acid,monounsaturated fats,polyunsaturated fats,linoleic acid,trans fatty acid,linolenic acid,vitamin E and saturated fats(fatty acid pattern).The third factor represented high intake of vitamin B12,vitamin D,cholesterol and calcium(mixed pattern).The 4^(th) pattern was high in intake of beta and alpha carotene,vitamin A and vitamin C(antioxidant pattern).Finally,the 5^(th) pattern loaded heavily on docosahexaenoic acid(DHA) and eicosapentaenoic acid(EPA)(omega-3 pattern).In crude and multivariate analysis,the sodium pattern was associated with increased risk of cataract(OR=1.97,95%CI:1.09-3.96).The fatty acid pattern elevated the risk of cataract(OR=1.94,95%CI:1.1-3.86).Antioxidant pattern was associated with a significant 79% reduced risk(2^(nd) category compared with the 1st).Omega-3 pattern was significantly negatively associated with risk of cataract(P=0.04).CONCLUSION:These findings imply that nutrient patterns reflecting a combined consumption of nutrients might be important in the etiology of cataract.Additional studies with more efficient designs are warranted to confirm our findings.
文摘Cotton(Gossypium spp.) is the leading fiber crop,and an important source of the important edible oil and protein meals in the world.Complex genetics and strong environmental effects hinder
文摘Soil cover disturbances have a direct effect on biogeochemistry, potentially enhancing nutrient loss, land degradation and associated changes in ecosystem services and livelihood support. The objective of this study was to assess how canopy affected throughfall chemistry and how hydrology affected stream nutrient load responses in two watersheds dominated by native old-growth evergreen rainforest (NF) and exotic plantation of Eucalyptus nitens (EP), located at the Coastal mountain range of southern Chile (40°S). We measured nitrogen (NO3-N, NH4-N, Organic-N, Total-N) and total phosphorus (Total-P) at catchment discharge, and δ18O in throughfall precipitation and stream discharge in both catchments, in order to separate throughfall (or new water) contributions during storm events. It was hypothesized that all nutrients showed an increase in concentration as discharge increased (or enhanced hydrological access), in EP;but not in NF. Our results indicated that Organic-N, Total-N and Total-P concentrations were positively related to discharge. However, NO3<sup style="margin-left:-7px;">--N showed a negative correlation with catchment discharge. Organic-N and Total-P showed a flush during storm events;the opposite was observed for NO3<sup style="margin-left:-7px;">--N. However, this behavior suggested that NO3<sup style="margin-left:-7px;">--N was being retained by charged particles or soil micro biota, whether Organic-N was flushed as it was more concentrated in big pore water that was not tightly attached, compared with NO3<sup style="margin-left:-7px;">--N.
文摘Nutrient application systems are designed to apply a relatively uniform amount of a fertilizer to agricultural fields. However, considerable variation in soil texture and other characteristics often occurs within and across production fields, which could have a major impact on fertilizer management strategies. Therefore, uniform application of a fertilizer over the entire field can be both costly and environmentally unsound. Due to their rugged and fool-proof design, crankshaft type piston pumps are widely used in agriculture. The on-the-go outlet flow of these pumps can only be varied by changing the drive shaft speed for each pump stroke setting. But only a limited range of flow rates can be achieved by changing the drive shaft speed. There is a need for an electronic controller, which can adjust the pump stroke on-the-go, for real-time, variable-rate application of crop nutrients. The Clemson “Electro-me-chanical controller for adjusting pump stroke on-the-go” was designed to replace the current manual stroke adjustment system on positive displacement piston pumps. This affordable system can be retrofitted on most John Blue - piston pumps for real-time adjustment of the pump stroke and can be controlled using pre-described position sequences (map-based) or real-time sensor commands (such as optical, pressure, and flow sensors) combined with fertilizer calculation algorithms. In addition, it can adjust pump stroke manually, using an eclectic dial from the tractor’s cab.
基金Supported by the State Key Laboratory of Freshwater Ecology and Biotechnology(Nos.2014FB14,2011FBZ14)Science and Technology Support Program of Hubei Province(No.2015BBA225)the Youth Innovation Association of Chinese Academy of Sciences(No.2014312)to WANG Haijun
文摘Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations(+N+P,-N+P, +N-P, and-N-P), with an 18-month whole-ecosystem experiment in eight ~800-m^2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P,-N+P, +N-P, and-N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in-N+P and 2 months in-N-P in the tank experiment, and after 3 months in-N?+P and ~3 months in-N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.
基金Supported by the National Environmental Protection Public Welfare Industry Targeted Research(201209027)
文摘The non-point source pollution arising from soil erosion is one of the main reasons for the deterioration of the water quality of the Taihu Lake Basin. Forest plays an important role in controlling soil erosion and reducing nutrient loss. Based on the survey data on forest resources in Anji County, we estimate the amount of soil erosion and nutrient loss of nitrogen and phosphorus reduced by forest, using soil erosion modulus method and soil nutrient content. In accordance with the degradation coefficient of pollutant and regional compensation standards of environmental resources, we assess the ecological benefits of forest function in reducing nutrient loss of nitrogen and phosphorus in Anji County. The results show that the forest in Anji County can reduce the soil erosion amount at 1.51 million t annually on the average, so as to control the nutrient loss of 1 409 t of total nitrogen and 577 t of total phosphorus in soil, equivalent to annually avoiding the flow of 824 t of total nitrogen and 410 t of total phosphorus into river water; this ecological service function can make forests in Anji County get 92.55 million yuan of ecological compensation funds (about 688 yuan/hm2·a), equivalent to 15 times of the current ecological compensation standard (47 yuan/hm2). The study reveals the importance of forest function in controlling soil erosion and nutrient loss in the upper reaches of Taihu Lake Basin to water environment protection in the basin, conducive to carrying out pollution control and protection work of the water environment in the basin.
文摘An artificial aquatic food web (AAFW) system was designed to remove the non-point source pollutants in eutrophic Jiyu river. A certain amount of Scenedesmus obliquus and Daphnia pulex was cultured in the system for the control of serious cyanobacterial bloom. The AAFW system was a continuous-flow system including one storage basin of 3 m<sup>3</sup> capacity with polluted river water (the total nitrogen-TN: 4.49 mg⋅l<sup>-1</sup><sup></sup>;the total phosphorus-TP: 0.192 mg⋅l-1</sup></sup><sup></sup>), one phytoplankton tank of 3 m<sup>3</sup> capacity with an initial concentrations of S. obliquus about 5.8 × 10<sup>3</sup> ind⋅l-1</sup><sup></sup>, and one zooplankton growth chamber of 1.5 m<sup>3</sup> capacity with an initial abundance of D. pulex about 22.5 ind⋅l-1</sup></sup>. The system was optimized by setting hydraulic retention time of phytoplankton tank as 5 days and the experiments were operated for 45 days. Compared with the polluted river, TN and TP were removed about 28% and 47% by the AAFW system, respectively. The biomass of phytoplankton decrease from 6.33 mg⋅l-1<sup></sup> to 1.48 mg⋅l-1</sup><sup></sup> and the percentage of cyanobacteria decrease from 43.93% to 2.36%, the biomass of Crustacean zooplankton increase from 0.34 mg⋅l-1</sup></sup><sup></sup> to 1.53 mg⋅l-1</sup></sup><sup></sup> and the percentage of D. pulex increase from 19.19% to 57.62%. Our results indicated that the AAFW system not only is an efficient, flexible system for reducing nutrient levels in tributary rivers, but also has an ability to control the cyanobacteria bloom and rebuilding the aquatic ecosystem from the polluted river water.