期刊文献+
共找到87,422篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of wall-disruption on nutrient composition and in vitro digestion of camellia and lotus bee pollens 被引量:1
1
作者 Yuan Yuan Shun Zhong +3 位作者 Zeyuan Deng Guangyan Li Jinwu Zhang Hongyan Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1567-1577,共11页
The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were i... The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods. 展开更多
关键词 Bee pollen nutrientS Wall disruption Phenolic compounds In vitro digestion
下载PDF
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize 被引量:1
2
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 MAIZE nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields 被引量:1
3
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China
4
作者 Wenjie Yang Jie Yu +9 位作者 Yanhang Li Bingli Jia Longgang Jiang Aijing Yuan Yue Ma Ming Huang Hanbing Cao Jinshan Liu Weihong Qiu Zhaohui Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2421-2433,共13页
The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status... The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production. 展开更多
关键词 fertilization method dryland wheat soil nutrient critical value soil nitrogen topsoil nutrients
下载PDF
Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptus grandis Hill ex Maiden and Pinus taeda L.
5
作者 Andrés Baietto Andrés Hirigoyen +1 位作者 Jorge Hernández Amabelia del Pino 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期26-36,共11页
Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major... Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems. 展开更多
关键词 AFFORESTATION LITTERFALL nutrient recycling Climate modeling MYRTACEAE PINACEAE
下载PDF
Response of Rice Growth and Nutrient Absorption in a SalineAlkali Paddy to Different Nitrogen Fertilizer Applications
6
作者 WANG Xinyi ZHU Hui +2 位作者 YAN Baixing Brian SHUTES ZENG Yuan 《Rice science》 SCIE CSCD 2024年第3期245-250,I0011-I0017,共13页
Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-... Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-alkali conditions is unclear.This study conducted a 147-day field-scale experiment to evaluate rice biomass and nutrient absorption capacity with five N-fertilizer applications.The results showed that the biomass. 展开更多
关键词 nutrient ALKALI ALKALI
下载PDF
Development and Validation of Integrated Nutrient Management Practices of Industrial Processing Varieties: Asterix and Courage in Bangladesh
7
作者 Azizul Hoque Md. Maniruzzaman Sikder Abul Khair 《Agricultural Sciences》 2024年第7期780-799,共20页
An experiment was meticulously conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, during the 2011-2012 potato growing season to develop integrat... An experiment was meticulously conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, during the 2011-2012 potato growing season to develop integrated crop management practices for the potato seed production of industrial processing varieties Asterix and Courage. Significantly, higher growth and yield parameters were found in the BADC-recommended practice. Later, another experiment was conducted to validate the BADC practice during the 2013-2014 potato growing season in two locations in Bangladesh. Results showed that the production of tuber per hill, tuber weight per hill as well as gross tuber yield per plot, higher proportion of storable seed tubers, and more quality seed potatoes (A-grade and B-grade) seed tubers were found significantly higher in the “BADC developed practice” compared to other treatments. Viral diseases (PLRV and PVY) prevalence was lower in “BADC developed practice”. Moreover, “BADC developed practice” contributed more economic yield by minimizing input cost compared to “Munshiganj advanced farmers’ practice”. Therefore, the “BADC developed practice” was found “superior” regarding yield, quality, and profitability in seed potato production of industrial varieties—Asterix and Courage in Bangladesh. 展开更多
关键词 Integrated nutrient Industrial Processing POTATOES
下载PDF
Temporal, Spatial, and Hypsometrical Dispersion of Nutrients in the Hula Valley, Israel
8
作者 Moshe Gophen Valerie Orlov-Levin 《Open Journal of Ecology》 2024年第8期604-628,共25页
Until 1957 most of the Hula Valley was occupied by swampy wetland covered by dense vegetation and old Lake Hula. Organic matter was accumulated in the bottom, decomposed under anoxic conditions creating Peat material.... Until 1957 most of the Hula Valley was occupied by swampy wetland covered by dense vegetation and old Lake Hula. Organic matter was accumulated in the bottom, decomposed under anoxic conditions creating Peat material. The wetland and the old lake were drained and the land-use was converted into agricultural development. Nutrients migrations from the Hula Valley through the headwater discharges carrying nutrients, where nitrogen enhancement is critical, significantly affecting water quality in down-stream Lake Kinneret. The fate of the Hula originated nutrients is partly known whilst fate of the others which might be probably a threat on the Kinneret water quality is unknown. The hypsometrical and spatial distribution of the Hula Valley originated nutrients within three depths level was indicated: shallowest level of surface water, intermediate level of underground water table and the deepest level of Lignite waters. The Hypsometrical and spatial distribution and regional origin of the nutrient in the Hula Valley was defined. Organic Nitrogen, Sulfate and Nitrates are mostly Hula Valley originated nutrients whilst most of the Phosphorus externally contributed to Lake Kinneret originate outside the Hula Valley. An underground north-south Hydrological gradient and nutrient migration along was indicated. It is suggested that an underground plastic barrier do not totally prevent horizontal nutrient migration. Hypsometrical downward migrated nutrients probably accumulate within the “Lignite” depth level. Management policy of increasing Peat Soil moisture, is recommended. 展开更多
关键词 Hula Valley Kinneret nutrientS RUNOFF UNDERGROUND LIGNITE
下载PDF
Characterization of Nutrients,Heavy Metals,Petroleum and Their Impact on Phytoplankton in Laizhou Bay:Implications for Environmental Management and Monitoring
9
作者 WANG Kai ZHAO Linlin +3 位作者 ZHU Yugui YANG Liqiang WANG Yunfeng HONG Xuguang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期822-834,共13页
The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petro... The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petroleum,heavy metals,and phytoplankton community structure across seven distinct areas in LB.The results indicate relatively high concentrations of NO_(2)-N,SiO_(4)-Si,and NO_(3)-N in the Southwest Laizhou Bay(SWLB)and Huanghe River Estuary(HRE).In contrast,the East Laizhou bay(ELB)and the North of Huanghe River Estuary(NHRE)exhibit the highest concentrations of heavy metals(As,Cr and Hg).The areas with high phytoplankton density and community diversity are mainly located in the SWLB.After adjusting for basic environmental factors,phytoplankton density and Margalef richness index D are significantly associated with nutrients(NO_(3)-N,NO_(2)-N,NH_(4)-N,SiO_(4)-Si),and heavy metal(Cr)concentrations.We highlight that,in addition to Xiaoqinghe River,nutrients brought by the Mihe River in the SWLB and heavy metal(Cr)pollution in the ELB resulting from industrial and mining activities along the coast significantly influence phytoplankton growth and community structure.Therefore,it is recommended that more monitoring and management efforts be focused on these regions in the future. 展开更多
关键词 Huanghe River Estuary Laizhou Bay nutrientS heavy metals PHYTOPLANKTON BIODIVERSITY
下载PDF
Litter production and leaf nutrient concentration and remobilization in response to climate seasonality in the central Amazon
10
作者 Ricardo Antonio Marenco Saul Alfredo Antezana-Vera +1 位作者 Daniela Pereira Dias Luiz Antonio Candido 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期131-141,共11页
Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seas... Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change. 展开更多
关键词 THROUGHFALL nutrient cycling Climatic seasonality Leaf mass per area
下载PDF
Effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets
11
作者 Zexi Li Yunfei Li +6 位作者 Yufei Zhao Guifu Wang Rujie Liu Yue Li Qamar Aftab Zewei Sun Qingzhen Zhong 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2106-2121,共16页
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th... Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen. 展开更多
关键词 Glucose release kinetics Nitrogen utilization nutrient transporter PIGLET
下载PDF
Biomineralization of soil with crude soybean urease using different calcium salts
12
作者 Yajie Weng Junjie Zheng +2 位作者 Hanjiang Lai Mingjuan Cui Xingzhi Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1788-1798,共11页
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl... Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3). 展开更多
关键词 BIOMINERALIZATION Crude soybean urease Calcium salt Influence mechanism
下载PDF
Unexpected Diversity in Ecosystem Nutrient Responses to Experimental Drought in Temperate Grasslands
13
作者 Biying Qiu Niwu Te +8 位作者 Lin Song Yuan Shi Chuan Qiu Xiaoan Zuo Qiang Yu Jianqiang Qian Zhengwen Wang Honghui Wu Wentao Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期831-841,共11页
The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a sig... The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a significantuncertainty to synthesis and site comparisons. We investigated the responses of vegetation and soil nutrientsto drought using a network experiment of temperate grasslands in Northern China. Drought treatment (66%reduction in growing season precipitation) was imposed by erecting rainout shelters, respectively, at the driest,intermediate, and wettest sites. We found that vegetation nutrient concentrations increased but soil nutrient concentrationsdecreased along the aridity gradient. Differential responses were observed under experimentaldrought among the three grassland sites. Specifically, the experimental drought did not change vegetation andsoil nutrient status at the driest site, while strongly reduced vegetation but increased soil nutrient concentrationsat the site with intermediate precipitation. On the contrary, experimental drought increased vegetation N concentrationsbut did not change vegetation P and soil nutrient concentrations at the wettest site. In general, the differentialeffects of drought on ecosystem nutrients were observed between manipulative and observationalexperiments as well as between sites. Our research findings suggest that conducting large-scale, consistent, andcontrolled network experiments is essential to accurately evaluate the effects of global climate change on terrestrialecosystem bio-geochemistry. 展开更多
关键词 Climate change drought experiment PRECIPITATION nutrient cycles
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
14
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 nutrientS LEACHING Saline Water Soil Acidity Soil Alkalinity
下载PDF
Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China
15
作者 Die Chen Wei Wei +2 位作者 Liding Chen Bojun Ma Hao Li 《Geography and Sustainability》 CSCD 2024年第2期230-240,共11页
Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources.Soil nutrients play a crucial role in determining soil quality,particularly in... Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources.Soil nutrients play a crucial role in determining soil quality,particularly in landscapes prone to drought.They are influenced by factors such as land-use type,slope aspect,and altitude.In this study,we sought to examine the impact of terracing on soil nutrients(soil organic content(SOC),total nitrogen(TN),nitrate-nitrogen(NO_(3)^(-)-N),ammonium nitrogen(NH_(4)^(+)-N),total phosphorus(TP),available phosphorus(AP),total potassium(TK),and available potassium(AK))and how they vary with environmental factors in the Chinese Loess Plateau.During the growing season,we collected 540 soil samples from the 0 to 100 cm soil layer across five major land-use types,different slope aspects,and varying altitudes.Additionally,a meta-analysis of literature data further corroborated the effective accumulation of soil nutrients through terracing in the Loess Plateau.Our findings are as follows:(1)Terraced fields,regardless of land-use type,showed a significant improvement in SOC and TN content.(2)Soil nutrient contents within terraced fields were predominantly higher on sunny slopes.(3)Terraces at lower altitudes are characterized by elevated SOC concentrations.(4)A meta-analysis of literature data pertaining to terracing and soil nutrients in this region confirmed the effective accumulation of soil nutri-ents through terracing.The elucidated outcomes of this study offer a profound theoretical underpinning for the accurate planning and management of terraces,the scientific utilization of land resources,and the enhancement of land productivity. 展开更多
关键词 TERRACE Soil nutrients Land-use Slope aspect ALTITUDE Loess Plateau
下载PDF
Effects of nutrient limitations on the sinking velocity of Thalassiosira weissflogii
16
作者 Jie Zhu Qiang Hao +2 位作者 Wei Zhang Yingying Ma Jiangning Zeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期163-172,共10页
The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,w... The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure. 展开更多
关键词 nutrient limitation Thalassiosira weissflogii sinking velocity biochemical component lipid content
下载PDF
Effects of inorganic nutrients and environmental factors on the removal of n-propylbenzene and isopropylbenzene in seawater by cryptophytes Rhinomonas reticulata S6A
17
作者 Jiali CUI Shuhao DU +3 位作者 Yumei LI Haiping LI Ping ZHANG Fanping MENG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1200-1215,共16页
To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environm... To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater. 展开更多
关键词 propylbenzene(PBZ) Rhinomonas reticulata seawater inorganic nutrient environmental factor
下载PDF
Impact of sourdough fermentation on nutrient transformations in cereal-based foods:Mechanisms,practical applications,and health implications
18
作者 Zhen Wang Luyang Wang 《Grain & Oil Science and Technology》 CAS 2024年第2期124-132,共9页
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor... Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods. 展开更多
关键词 Sourdough fermentation Lactic acid bacteria PROTEOLYSIS Starch hydrolysis Low-GI nutrientS
下载PDF
Effects of Forest Types on Soil Available Nutrients and Carbon Contents in Coastal Areas,China
19
作者 Zirui Chen Jiale Liu Haijun Sun 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第10期2557-2569,共13页
Clarifying the soil nutrient dynamics caused by forest type variations in the coastal region helps scientifically to apply fertilizer to forest plantations and enhance the carbon(C)sink capacity.Pure forests of Ligust... Clarifying the soil nutrient dynamics caused by forest type variations in the coastal region helps scientifically to apply fertilizer to forest plantations and enhance the carbon(C)sink capacity.Pure forests of Ligustrum and Metasequoia,as well as their mixed forests,in a coastal region of China were investigated by collecting 0-20 and 20-40 cm soil samples and analyzing their differences in bulk density,water content,pH,soil organic matter(SOM),ammonium(NH_(4)^(+)-N),nitrate(NO_(3)^(-)-N)and total nitrogen(TN),available phosphorus(AP)and potassium(AK),microbial biomass C(MBC)and N(MBN),and enzyme activity.The results demonstrated that different forest types had no significant(p≥0.05)effect on 0-20 cm soil bulk density,water content,pH,NH_(4)^(+)-N,and SOM.However,the surface soil NO_(3)^(-)-N,TN,AP,and AK contents as well as enzyme activity changed significantly(p<0.05),in which the soil AK content of the ligustrum×metasequoia mixed forest was 47.5%and 65.5%higher than that of the ligustrum and metasequoia pure forest,respectively.The mixed forest soil had the highest MBN content,which was significantly(p<0.05)25.1%higher than that in the pure metasequoia forest.Meanwhile,soil phosphatase activities in ligustrum and metasequoia pure forests were significantly(p<0.05)lower than those in the mixed forests by 17.4%and 43.1%,respectively.However,soil NO_(3)^(-)-N and AP contents in the metasequoia pure forest were significantly(p<0.05)higher than those in the ligustrum pure forest and mixed forests.Soil MBC content and reductase NO_(3)^(-)-N activity were significantly(p<0.05)higher in ligustrum pure forest than in metasequoia pure forest and mixed forests.In addition,the results of two-way ANOVA showed that there were no significant(p≥0.05)differences in nutrient contents(e.g.,NH_(4)^(+)-N,AP,AK,and SOM)in different soil layers(0-20 and 20-40 cm)within the same forest type,except for NO_(3)^(-)-N.However,forest types had a significant(p<0.05)impact on NO_(3)^(-)-N and AP contents in 20-40 cm soil layer.Combining the two factors of forest stand and soil layer,there was a significant(p<0.05)interaction effect for their soil NH_(4)^(+)-N,NO_(3)^(-)-N,AP,and AK contents.In conclusion,significant(p<0.05)differences were observed in nutrient contents in 0-20 cm soil layer from different forest types,with soil fertility indices inmixed forests generally higher than in pure forests.Therefore,establishing mixed forests in coastal saline region is recommended to retain soil fertility and to enhance the C sink capacity of forestry. 展开更多
关键词 Agroforestry ecosystem mixed forest NITROGEN saline-alkali land soil nutrient SOM
下载PDF
Rhizobium Inoculation and Micronutrient Addition Influence the Growth,Yield,Quality and Nutrient Uptake of Garden Peas(Pisum sativum L.)
20
作者 MdAbdul Quddus MdAtaur Rahman +8 位作者 Razu Ahmed Mohammad Eyakub Ali Khokan Kumer Sarker MdAlamgir Siddiky Mohibur Rahman Lamya Ahmed Alkeridis Samy Sayed Ahmed Gaber Akbar Hossain 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期901-922,共22页
Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity ... Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity and quality of garden peas,since this management for garden peas is neglected in Bangladesh.Therefore,the present study was made to assess the effectiveness of rhizobium inoculant singly or in combination with the micronutrients(i.e.,Zn,B,and Mo)on growth,yield,nutrient uptake,and quality of garden peas.Treatments were:T_(1)=Control,T_(2)=Rhizobium inoculation at 50 g/kg seed,T_(3)=T_(2)+Zn_(3)Mo1,T_(4)=T_(2)+B_(2)Mo1,T_(5)=T_(2)+Zn_(3)B_(2),T_(6)=T_(2)+Zn_(3)B_(2)Mo1 and T_(7)=Zn_(3)B_(2)Mo1.All treatments were arranged in a randomized complete block design and repeated all treatments in three times.The application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)with inoculation of Rhizobium at 50 g kg^(−1)seed(T_(6))facilitated to increase of 44.8%in the green pod and 29.7%seed yield over control.The same treatment contributed to attaining the maximum nodulation(25.3 plant^(−1)),Vitamin C(43.5 mg 100 g^(−1)),protein content(22.2%),and nutrient uptake as well as accumulation in garden peas.Among all treatment combinations,treatment T_(6)was found superior to others based on microbial activities,soil fertility,and profitability.The results of the study found that the application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)in combination with Rhizobium inoculation(50 g kg^(−1)seed)can improve the yield and quality of garden peas.The results of the study have the potential for the areas,where there is no use of Rhizobium inoculant or Zn,B,and Mo fertilizer for cultivation of garden pea. 展开更多
关键词 NODULATION nutrient content Pisum sativum L. PROFITABILITY RHIZOBIUM Zn B Mo
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部