Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well...Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.展开更多
基金National Natural Science Foundation of China(Nos.51405079)China Postdoctoral Science Foundation of China(No.2015M570307)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Jiangsu Planned Projects for Postdoctoral Research Funds,China
文摘Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.