The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (ph...The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Sat...Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.展开更多
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili...The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.展开更多
Future satellite gravity missions (FGMs) have been intensively studied during the last recent years for the era beyond the successful previous GRACE and current GRACE Follow-on satellite missions. Previous studies hav...Future satellite gravity missions (FGMs) have been intensively studied during the last recent years for the era beyond the successful previous GRACE and current GRACE Follow-on satellite missions. Previous studies have investigated the gravity field recovery derived from combined two satellite-pairs (referred here as PI-FGM, a single polar satellite-pair like the GRACE mission combined with another inclined satellite-pair) with different orbital heights of few kilometers and different repeat orbital periods. In this contribution, new innovative idea is introduced by designing the inclined satellite-pair of the FGM at the same orbital height of the polar-type with shifted spatio-temporal (ST-FGM) orbital parameters to avoid any possible collision risk between the two satellite-pairs, polar and inclined, of the FGM architecture. The repeat orbits issue will be taken into consideration through the manuscript and will be set as identical as possible for a fair comparison. The findings through a full-scale simulation analysis show that the new design of shifted spatio-temporal polar-inclined (ST-FGM) mission architecture basically outperforms the two satellite-pairs having different orbital heights (i.e. the PI-FGM mission configuration). Regarding the gravity field recovery, the ST-FGM architecture retrieves the geoid heights with standard deviations of about 17.0 mm providing more isotropic error distribution. An overall improvement by a factor of about 80 and 60 is provided by the ST-FGM and PI-FGM mission architectures, respectively, with respect to the GRACE-like formation and a factor of about 2.4 and 1.8, respectively, with respect to the smoothed gravity solution using the Gaussian filter at radius 400 km. Therefore, the shifted spatio-temporal polar-inclined (ST-FGM) is worthy recommended as stable mission architecture and would be considered as one of the future gravity missions.展开更多
In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error ...In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.展开更多
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
文摘The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.
基金supported by the National Natural Science Foundation of China(72101270,72001213).
文摘The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
文摘Future satellite gravity missions (FGMs) have been intensively studied during the last recent years for the era beyond the successful previous GRACE and current GRACE Follow-on satellite missions. Previous studies have investigated the gravity field recovery derived from combined two satellite-pairs (referred here as PI-FGM, a single polar satellite-pair like the GRACE mission combined with another inclined satellite-pair) with different orbital heights of few kilometers and different repeat orbital periods. In this contribution, new innovative idea is introduced by designing the inclined satellite-pair of the FGM at the same orbital height of the polar-type with shifted spatio-temporal (ST-FGM) orbital parameters to avoid any possible collision risk between the two satellite-pairs, polar and inclined, of the FGM architecture. The repeat orbits issue will be taken into consideration through the manuscript and will be set as identical as possible for a fair comparison. The findings through a full-scale simulation analysis show that the new design of shifted spatio-temporal polar-inclined (ST-FGM) mission architecture basically outperforms the two satellite-pairs having different orbital heights (i.e. the PI-FGM mission configuration). Regarding the gravity field recovery, the ST-FGM architecture retrieves the geoid heights with standard deviations of about 17.0 mm providing more isotropic error distribution. An overall improvement by a factor of about 80 and 60 is provided by the ST-FGM and PI-FGM mission architectures, respectively, with respect to the GRACE-like formation and a factor of about 2.4 and 1.8, respectively, with respect to the smoothed gravity solution using the Gaussian filter at radius 400 km. Therefore, the shifted spatio-temporal polar-inclined (ST-FGM) is worthy recommended as stable mission architecture and would be considered as one of the future gravity missions.
基金supported in part by the National Key Research and Development Program of China (Grant No. 2020YFC2201501)the National Natural Science Foundation of China (Grant No. 12147103, special fund to the center for quanta-to-cosmos theoretical physics) (Grant No. 11821505)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100)the Chinese Academy of Sciences (CAS)。
文摘In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.