An impedance immunosensor based on O-phenylenediamine modified gold electrode for the determination of phytohormone abscisic acid(ABA) was proposed.The operating pH,absorption time,absorption temperature and concentra...An impedance immunosensor based on O-phenylenediamine modified gold electrode for the determination of phytohormone abscisic acid(ABA) was proposed.The operating pH,absorption time,absorption temperature and concentration of anti-ABA antibody were investigated to optimize the analytical performance.The calibration curve for the determination of ABA was obtained from this impedance immunosensor under optimal conditions.The results showed that the detection limit at about 1 ng/mL in the range of 10-5000 ng/mL...展开更多
Ionic liquid like 1-ethyl-3-methylimidazolium bromine ([EMIM]Br) has been used as electrolyte for the electropolymerization of O-phenylenediamine at glassy carbon electrode by cyclic voltammetry. It is found that poly...Ionic liquid like 1-ethyl-3-methylimidazolium bromine ([EMIM]Br) has been used as electrolyte for the electropolymerization of O-phenylenediamine at glassy carbon electrode by cyclic voltammetry. It is found that poly (O-phenylenediamine) film modified electrode has favorable electrochemical activity in acid solution.展开更多
Hemeproteins encapsulated in reversed micelle formulated with di-2-ethylhexyl sulfosuccinate(AOT) was found to catalyze the polymerization of o-phenylenediamine(o-PDA) with hydrogen peroxide, whereas o-PDA catalyzed...Hemeproteins encapsulated in reversed micelle formulated with di-2-ethylhexyl sulfosuccinate(AOT) was found to catalyze the polymerization of o-phenylenediamine(o-PDA) with hydrogen peroxide, whereas o-PDA catalyzed by hemeproteins dissolved in water could only form its trimers. As the nanostructural environment in reversed micelle acts as a certain orientation surrounding medium, it offers a strong electrostatic field that alters the reductive potential of Fe 3+/Fe 2+(E m7) in the heme of hemeproteins and thus increases the catalytic activity of peroxidase accordingly. According to the results of UV-Vis, 1H NMR and FTIR, the polymer catalyzed by hemoglobin(Hb) in reversed micelle was presumed to be constructed of lines and trapeziforms alternatively.展开更多
,3-Disubstituted quinoxalines were synthesized from α-acetylthioformanilide and ophenylenediamine. Further studies sliowed that there existed competitive re- actions. One was a condensation reaction which produced su...,3-Disubstituted quinoxalines were synthesized from α-acetylthioformanilide and ophenylenediamine. Further studies sliowed that there existed competitive re- actions. One was a condensation reaction which produced substituted quinoxaline and the other was a substitution reaction which produced substituted quinoxaline-2- thione.展开更多
Instead of 2-(aroylmethylene)benzimidazolines 3 or 2-(aroyl-methyl)benzimidazoles 4, 4-aryl-2, 3-dihydro-1H-1, 5-benzodiazepin-2-ones 5 were obtained exclusively from the reaction of o-phenylenediamine (1) and ethyl a...Instead of 2-(aroylmethylene)benzimidazolines 3 or 2-(aroyl-methyl)benzimidazoles 4, 4-aryl-2, 3-dihydro-1H-1, 5-benzodiazepin-2-ones 5 were obtained exclusively from the reaction of o-phenylenediamine (1) and ethyl aroylacetates 2 in the presence of a catalytic amount of potassium hydroxide.展开更多
The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and ...The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.展开更多
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional ...The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.展开更多
A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applie...A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applied liquid phase oxidation of glyoxal to glyoxylic acid. It was found that V2O5/C catalyst exhibited obvious activity for glyoxal oxidation. Glyoxylic acid could be obtained without pH regulation during the reaction. By using this catalyst, the conversion of glyoxal and the yield of glyoxalic acid were 29.2% and 13.6%, respectively at 313 K and oxygen flow 0.1 L/rain after reaction for 10 h.展开更多
Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in ...Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.展开更多
The aim of this study is to analyze the various compositions of polyvinyl alcohol (PVA) and starch blends. The blends have been cross-linked with glyoxal to enhance its properties. The hydroxyl groups of PVA and starc...The aim of this study is to analyze the various compositions of polyvinyl alcohol (PVA) and starch blends. The blends have been cross-linked with glyoxal to enhance its properties. The hydroxyl groups of PVA and starch react with glyoxal via formation of acetal bonds;hence crosslinking could take place. The cross-linking of glyoxal is observed in various analytical methods such as DSC and FTIR. The cross-linked blends showed better thermal and mechanical properties. Viscosity, tensile shear strength, pencil hardness and ultimate stress were evaluated to estimate the changes due to cross-linking. It was observed that the cross-linking is directly proportional to starch, since the starch hydroxyl groups are easily accessible for reacting. The cross-linked blend showed better cohesion between its chains, thereby increasing glass transition temperature. It was reflected in the subsequent increase in tensile strength properties.展开更多
A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was ca...A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was carried out. The obtained rate constants can be used for atmospheric modeling.展开更多
Three possible lower barrier dissociation pathways of the deportonated glyoxylic acid in aqueous solution are predicated by means of B3LYP and CCSD(T) (single-point) methods. The calculated results suggest that th...Three possible lower barrier dissociation pathways of the deportonated glyoxylic acid in aqueous solution are predicated by means of B3LYP and CCSD(T) (single-point) methods. The calculated results suggest that the formation of formate ion is the energetically most favorable process, and that the decomposition reaction is occurring through nucleophilic attack of negatively charged carboxylic oxygen on the α-carbon. This is in good agreement with the proposed mechanisms of the mass spectrometry experiment.展开更多
Crosslinking is a common practice to improve the barrier properties of polymers. In this study, Montmorillonite (MMT) was used with Polyvinyl alcohol (PVA) to deposit nanocomposite coatings which were crosslinked with...Crosslinking is a common practice to improve the barrier properties of polymers. In this study, Montmorillonite (MMT) was used with Polyvinyl alcohol (PVA) to deposit nanocomposite coatings which were crosslinked with glyoxal (Gly) by Layer by Layer (LbL) on a PET substrate. Two crosslinking conditions were studied, under mild condition and with an acidic environment. Mild condition was useful to identify the reversibility steps and the optimum crosslinking times while the acidic environment was essential to investigate the crosslinking mechanism, by determining the permeability for different crosslinking times. PVA and PVA-MMT coatings showed a strong correlation between the permeability coefficients for different crosslinking times and the FTIR results.展开更多
More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that ...More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels.展开更多
In this study, we report a novel magnetic biomimetic nanozyme(Fe3O4@Cu/GMP(guanosine5′-monophosphate)) with high laccase-like activity, which could oxidize toxic ophenylenediamine(OPD) and remove phenolic compounds.T...In this study, we report a novel magnetic biomimetic nanozyme(Fe3O4@Cu/GMP(guanosine5′-monophosphate)) with high laccase-like activity, which could oxidize toxic ophenylenediamine(OPD) and remove phenolic compounds.The magnetic laccase-like nanozyme was readily obtained via complexed Cu2+and GMP that grew on the surface of magnetic Fe3O4 nanoparticles.The prepared Fe3O4@Cu/GMP catalyst could be magnetically recycled for at least five cycles while still retaining above 70% activity.As a laccase mimic,Fe3O4@Cu/GMP had more activity and robust stability than natural laccase for the oxidization of OPD.Fe3O4@Cu/GMP retained about 90% residual activity at 90℃ and showed little change at pH 3–9, and the nanozyme kept its excellent activity after long-term storage.Meanwhile, Fe3O4@Cu/GMP had better activity for removing phenolic compounds, and the removal of naphthol was more than 95%.Consequently, the proposed Fe3O4@Cu/GMP nanozyme shows potential for use as a robust catalyst for applications in environmental remediation.展开更多
Vanadyl acetylacetonate,VO(acac)_2,has been found to be very effective catalyst for synthesis of a variety of benzimidazoles under solvent-free condition.The methodology involves the exposure of a mixture of o-pheny...Vanadyl acetylacetonate,VO(acac)_2,has been found to be very effective catalyst for synthesis of a variety of benzimidazoles under solvent-free condition.The methodology involves the exposure of a mixture of o-phenylenediamine and a selected aromatic carboxylic acid/aldehyde to microwave radiation without the use of any solvent or supporting agents.The benzimidazoles were obtained in quick time with high yields.展开更多
Alkali-ion batteries,including potassium-ion batter-ies,lithium-ion batteries,and sodium-ion batteries are important energy storage devices;however,with the cation size increased,there exists a great challenge for an ...Alkali-ion batteries,including potassium-ion batter-ies,lithium-ion batteries,and sodium-ion batteries are important energy storage devices;however,with the cation size increased,there exists a great challenge for an inorganic electrode material to accommodate the different properties of the alkali-ion.Herein,as a proof-of-concept experiment,an imine-rich poly(o-phenylenediamine)(PoPD)is syn-thesized through a rational controllable oxidization.Due to the abundance of active sites and ladder-conjugated structure,PoPD in the optimized oxida-tion state endows alkali-ion batteries with a stable cyclability at high capacity.The highly reversible redox performance of PoPD with alkali-ions is verified by theoretical calculations and demonstrat-ed as a trifunctional electrode material(537 and 307 mAh·g^(−1) for Li and Na storage capacity after 300 cycles,respectively),especially for successful application in potassium storage(450 mAh·g^(−1) after 205 cycles),and provides compelling evidence for the wide application of organic electrode materials.展开更多
A simple, environmental-friendly, and practical method for the synthesis of benzodiazepine derivatives through a reaction of substituted o-phenylenediamines with alkyl propiolates has been developed. The reactions gen...A simple, environmental-friendly, and practical method for the synthesis of benzodiazepine derivatives through a reaction of substituted o-phenylenediamines with alkyl propiolates has been developed. The reactions generated the 1,5-benzodiazepines in good to excellent yields in the presence of catalytic amount of In(OTf)3 under sol- vent-free reaction conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.90817101,30670190 and 3060049)
文摘An impedance immunosensor based on O-phenylenediamine modified gold electrode for the determination of phytohormone abscisic acid(ABA) was proposed.The operating pH,absorption time,absorption temperature and concentration of anti-ABA antibody were investigated to optimize the analytical performance.The calibration curve for the determination of ABA was obtained from this impedance immunosensor under optimal conditions.The results showed that the detection limit at about 1 ng/mL in the range of 10-5000 ng/mL...
文摘Ionic liquid like 1-ethyl-3-methylimidazolium bromine ([EMIM]Br) has been used as electrolyte for the electropolymerization of O-phenylenediamine at glassy carbon electrode by cyclic voltammetry. It is found that poly (O-phenylenediamine) film modified electrode has favorable electrochemical activity in acid solution.
文摘Hemeproteins encapsulated in reversed micelle formulated with di-2-ethylhexyl sulfosuccinate(AOT) was found to catalyze the polymerization of o-phenylenediamine(o-PDA) with hydrogen peroxide, whereas o-PDA catalyzed by hemeproteins dissolved in water could only form its trimers. As the nanostructural environment in reversed micelle acts as a certain orientation surrounding medium, it offers a strong electrostatic field that alters the reductive potential of Fe 3+/Fe 2+(E m7) in the heme of hemeproteins and thus increases the catalytic activity of peroxidase accordingly. According to the results of UV-Vis, 1H NMR and FTIR, the polymer catalyzed by hemoglobin(Hb) in reversed micelle was presumed to be constructed of lines and trapeziforms alternatively.
文摘,3-Disubstituted quinoxalines were synthesized from α-acetylthioformanilide and ophenylenediamine. Further studies sliowed that there existed competitive re- actions. One was a condensation reaction which produced substituted quinoxaline and the other was a substitution reaction which produced substituted quinoxaline-2- thione.
基金This work was supported by the National Natural Science Foundation of China.
文摘Instead of 2-(aroylmethylene)benzimidazolines 3 or 2-(aroyl-methyl)benzimidazoles 4, 4-aryl-2, 3-dihydro-1H-1, 5-benzodiazepin-2-ones 5 were obtained exclusively from the reaction of o-phenylenediamine (1) and ethyl aroylacetates 2 in the presence of a catalytic amount of potassium hydroxide.
基金Funded by the National Natural Science Foundation of China(No.32160348)the Department Program of Guizhou Province(No.ZK[2021]162)+1 种基金the Guizhou Province Science and Technology Plan Project(No.[2020]1Y128)the Forestry Department Foundation of Guizhou Province of China(Nos.J[2022]21 and[2020]C14)。
文摘The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.
文摘The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.
文摘A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applied liquid phase oxidation of glyoxal to glyoxylic acid. It was found that V2O5/C catalyst exhibited obvious activity for glyoxal oxidation. Glyoxylic acid could be obtained without pH regulation during the reaction. By using this catalyst, the conversion of glyoxal and the yield of glyoxalic acid were 29.2% and 13.6%, respectively at 313 K and oxygen flow 0.1 L/rain after reaction for 10 h.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2325 and [2020]1Y125)the Growth Project of Young Scientific and Technological Talents in Colleges and Universities of Guizhou Province(No.[2019]184)+1 种基金Yunnan Fundamental Research Key Projects(No.2019FA012)National Natural Science Foundation of China(Nos.31870546 and 31800481).
文摘Based on the ESI-MS and ^(13)C-NMR analysis of the forms of glyoxal in acidic and alkaline solutions,the soy-based adhesive cross-linked by glyoxal was prepared in this work.The results showed that glyoxal existed in water in different forms at different pH levels.Under alkaline conditions,glyoxal transformed to glycolate through the intramolecular disproportionation reaction.Under acidic conditions,although some of glyoxal transformed to glycolate as what happened under alkaline conditions,most of glyoxal molecules existed in the form of fiveor six-membered cyclic ether structure.No ethylene tetraol or free aldehyde group was actually detected under these conditions.Although glyoxal reacted with soy protein under both acidic and alkaline conditions,alkaline conditions were more favorable for the improvement of mechanical performance and water resistance of soybased adhesives than acid conditions.
文摘The aim of this study is to analyze the various compositions of polyvinyl alcohol (PVA) and starch blends. The blends have been cross-linked with glyoxal to enhance its properties. The hydroxyl groups of PVA and starch react with glyoxal via formation of acetal bonds;hence crosslinking could take place. The cross-linking of glyoxal is observed in various analytical methods such as DSC and FTIR. The cross-linked blends showed better thermal and mechanical properties. Viscosity, tensile shear strength, pencil hardness and ultimate stress were evaluated to estimate the changes due to cross-linking. It was observed that the cross-linking is directly proportional to starch, since the starch hydroxyl groups are easily accessible for reacting. The cross-linked blend showed better cohesion between its chains, thereby increasing glass transition temperature. It was reflected in the subsequent increase in tensile strength properties.
文摘A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was carried out. The obtained rate constants can be used for atmospheric modeling.
基金supported by the Research Project of Department of Education of Heilongjiang Province (No.11531415).
文摘Three possible lower barrier dissociation pathways of the deportonated glyoxylic acid in aqueous solution are predicated by means of B3LYP and CCSD(T) (single-point) methods. The calculated results suggest that the formation of formate ion is the energetically most favorable process, and that the decomposition reaction is occurring through nucleophilic attack of negatively charged carboxylic oxygen on the α-carbon. This is in good agreement with the proposed mechanisms of the mass spectrometry experiment.
文摘Crosslinking is a common practice to improve the barrier properties of polymers. In this study, Montmorillonite (MMT) was used with Polyvinyl alcohol (PVA) to deposit nanocomposite coatings which were crosslinked with glyoxal (Gly) by Layer by Layer (LbL) on a PET substrate. Two crosslinking conditions were studied, under mild condition and with an acidic environment. Mild condition was useful to identify the reversibility steps and the optimum crosslinking times while the acidic environment was essential to investigate the crosslinking mechanism, by determining the permeability for different crosslinking times. PVA and PVA-MMT coatings showed a strong correlation between the permeability coefficients for different crosslinking times and the FTIR results.
基金funded by National Research and Innovation Agency,Republic of Indonesia,Research Grant No.65/II.7/HK/2022,titled Pengembangan Produk Oriented Strand Board Unggul dari Kayu Ringan dan Cepat Tumbuh dalam Rangka Pengembangan Produk Biokomposit Prospektif。
文摘More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels.
基金financial support from the National Natural Science Foundation of China (No.21878014)the Beijing Municipal Natural Science Foundation (No.2182019)+2 种基金the Beijing Natural Science Foundation–Beijing Municipal Education Commission Joint Funding project (No.KZ201710020014)the Double First-rate Program (No.ylkxj03)the Overseas Expertise Introduction Project for Discipline Innovation (No.B13005).
文摘In this study, we report a novel magnetic biomimetic nanozyme(Fe3O4@Cu/GMP(guanosine5′-monophosphate)) with high laccase-like activity, which could oxidize toxic ophenylenediamine(OPD) and remove phenolic compounds.The magnetic laccase-like nanozyme was readily obtained via complexed Cu2+and GMP that grew on the surface of magnetic Fe3O4 nanoparticles.The prepared Fe3O4@Cu/GMP catalyst could be magnetically recycled for at least five cycles while still retaining above 70% activity.As a laccase mimic,Fe3O4@Cu/GMP had more activity and robust stability than natural laccase for the oxidization of OPD.Fe3O4@Cu/GMP retained about 90% residual activity at 90℃ and showed little change at pH 3–9, and the nanozyme kept its excellent activity after long-term storage.Meanwhile, Fe3O4@Cu/GMP had better activity for removing phenolic compounds, and the removal of naphthol was more than 95%.Consequently, the proposed Fe3O4@Cu/GMP nanozyme shows potential for use as a robust catalyst for applications in environmental remediation.
基金the Department of Science and Technology(DST),New Delhi,Government of India for providing financial support(SR/FTP/CS-100/2007)
文摘Vanadyl acetylacetonate,VO(acac)_2,has been found to be very effective catalyst for synthesis of a variety of benzimidazoles under solvent-free condition.The methodology involves the exposure of a mixture of o-phenylenediamine and a selected aromatic carboxylic acid/aldehyde to microwave radiation without the use of any solvent or supporting agents.The benzimidazoles were obtained in quick time with high yields.
基金This work was financially supported by the National Natural Science Foundation of China(21725103and51472232),JCKY2016130B010,Jilin Province Science and Technolo-gy Development Plan Funding Project(20180101203JC and 20160101289JC)Changchun Science and Tech-nologyDevelopmentPlanFundingProject(18DY012).
文摘Alkali-ion batteries,including potassium-ion batter-ies,lithium-ion batteries,and sodium-ion batteries are important energy storage devices;however,with the cation size increased,there exists a great challenge for an inorganic electrode material to accommodate the different properties of the alkali-ion.Herein,as a proof-of-concept experiment,an imine-rich poly(o-phenylenediamine)(PoPD)is syn-thesized through a rational controllable oxidization.Due to the abundance of active sites and ladder-conjugated structure,PoPD in the optimized oxida-tion state endows alkali-ion batteries with a stable cyclability at high capacity.The highly reversible redox performance of PoPD with alkali-ions is verified by theoretical calculations and demonstrat-ed as a trifunctional electrode material(537 and 307 mAh·g^(−1) for Li and Na storage capacity after 300 cycles,respectively),especially for successful application in potassium storage(450 mAh·g^(−1) after 205 cycles),and provides compelling evidence for the wide application of organic electrode materials.
基金Project supported bythe National Natural Science Foundation of China(Nol 20972057).
文摘A simple, environmental-friendly, and practical method for the synthesis of benzodiazepine derivatives through a reaction of substituted o-phenylenediamines with alkyl propiolates has been developed. The reactions generated the 1,5-benzodiazepines in good to excellent yields in the presence of catalytic amount of In(OTf)3 under sol- vent-free reaction conditions.