This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, ...An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive ...This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.展开更多
This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades...This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy.展开更多
Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of obje...Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.展开更多
The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolu...The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolution.We used two key techniques:the selection of optimum image segmentation scale and the development of an appropriate object-oriented information extraction strategy.With the principle of minimizing merge cost of merging neighboring pixels/objects,we used spatial autocorrelation index Moran's I and the variance index to select the optimum segmentation scale.The Nearest Neighborhood(NN) classifier based on sampling and a knowledge-based fuzzy classifier were used in the object-oriented information extraction strategy.In this classification step,feature optimization was used to improve information extraction accuracy using reduced data dimension.These two techniques were applied to land cover information extraction for Shanghai city using a HJ-1 CCD image.Results indicate that the information extraction accuracy of the object-oriented method was much higher than that of the pixel-based method.展开更多
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
基金Project(2009CB226107)supported by the National Basic Research Program of China
文摘An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
文摘This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper.
文摘This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy.
文摘Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.
基金supported by National Key Technology Research and Development Program of China (Grant Nos.2008BAC34B02 and 2008BAC3403)
文摘The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolution.We used two key techniques:the selection of optimum image segmentation scale and the development of an appropriate object-oriented information extraction strategy.With the principle of minimizing merge cost of merging neighboring pixels/objects,we used spatial autocorrelation index Moran's I and the variance index to select the optimum segmentation scale.The Nearest Neighborhood(NN) classifier based on sampling and a knowledge-based fuzzy classifier were used in the object-oriented information extraction strategy.In this classification step,feature optimization was used to improve information extraction accuracy using reduced data dimension.These two techniques were applied to land cover information extraction for Shanghai city using a HJ-1 CCD image.Results indicate that the information extraction accuracy of the object-oriented method was much higher than that of the pixel-based method.