期刊文献+
共找到600篇文章
< 1 2 30 >
每页显示 20 50 100
Water quality assessment for Ulansuhai Lake using fuzzy clustering and pattern recognition 被引量:5
1
作者 任春涛 李畅游 +3 位作者 贾克力 张生 李卫平 曹有玲 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2008年第3期339-344,共6页
Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clu... Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clustering with pattern recognition was developed by integrating transitive closure method,ISODATA algorithm in fuzzy clustering and fuzzy pattern recognition.The model was applied to partition the Ulansuhai Lake,a typical shallow lake in arid climate zone in the west part of Inner Mongolia,China and grade the condition of water quality divisions.The results showed that the partition well matched the real conditions of the lake,and the method has been proved accurate in the application. 展开更多
关键词 transitive closure method ISODATA clustering algorithm fuzzy pattern recognition method partitioning of water quality
下载PDF
A systematic method based on statistical pattern recognition for estimating product quality on-line 被引量:1
2
作者 Guang Li, Huade Li, Shaoyuan Sun, and Zhengguang XuInformation Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期69-73,共5页
To avoid the complexity of building mechanistic models by studying the inner nature of the object, a systematic method based on statistical pattern recognition is developed in order to estimate the product quality on-... To avoid the complexity of building mechanistic models by studying the inner nature of the object, a systematic method based on statistical pattern recognition is developed in order to estimate the product quality on-line. The mapping relationship between a feature space and a product quality space can be built by using regression analysis, and in applying clustering analysis the product quality space can be partitioned automatically. Eventually, estimating product quality on-line can be accomplished by sorting the mapped data in the partitioned quality space. A concrete problem is proposed which has a relatively small ratio of training data to input variables. By implementing the method mentioned above, a satisfying result has been achieved. Furthermore, the further question about choosing suitable mapping methods is briefly discussed. 展开更多
关键词 pattern recognition regression analysis clustering analysis ISODATA algorithm sorting algorithm
下载PDF
THE APPLICATION OF PATTERN RECOGNITION TECHNIQUES IN FAULT DIAGNOSIS OF MACHINERY EQUIPMENT
3
作者 颜玉玲 徐尹格 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第8期745-749,共5页
In this paper, the characteristics of vibration signal of machinery in different running conditions are statistically analysed, and some moments of statistical distribution of signals are selected as the eigenvector t... In this paper, the characteristics of vibration signal of machinery in different running conditions are statistically analysed, and some moments of statistical distribution of signals are selected as the eigenvector to condense the state information. Here, we divide the states of machinery into two: 'good' and 'faulty', and the pattern recognition techniques are used to classify the running conditions of machinery. At the end of this paper, the authors present some test data, and from the results obtained, it's verified that the eigenvector selected is reliable and sensible to faults. And the results also show the effectiveness of classification rule. 展开更多
关键词 pattern recognition condense state information divergence index inter-object distance intra-object distance
下载PDF
Fault Pattern Recognition based on Kernel Method and Fuzzy C-means
4
作者 SUN Yebei ZHAO Rongzhen TANG Xiaobin 《International Journal of Plant Engineering and Management》 2016年第4期231-240,共10页
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c... A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery. 展开更多
关键词 Kernel method fuzzy C-means FCM pattern recognition clustering
下载PDF
An unsupervised pattern recognition methodology based on factor analysis and a genetic-DBSCAN algorithm to infer operational conditions from strain measurements in structural applications 被引量:5
5
作者 Juan Carlos PERAFAN-LOPEZ Julian SIERRA-PEREZ 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期165-181,共17页
Structural Health Monitoring(SHM) suggests the use of machine learning algorithms with the aim of understanding specific behaviors in a structural system. This work introduces a pattern recognition methodology for ope... Structural Health Monitoring(SHM) suggests the use of machine learning algorithms with the aim of understanding specific behaviors in a structural system. This work introduces a pattern recognition methodology for operational condition clustering in a structure sample using the well known Density Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm.The methodology was validated using a data set from an experiment with 32 Fiber Bragg Gratings bonded to an aluminum beam placed in cantilever and submitted to cyclic bending loads under 13 different operational conditions(pitch angles). Further, the computational cost and precision of the machine learning pipeline called FA + GA-DBSCAN(which employs a combination of machine learning techniques including factor analysis for dimensionality reduction and a genetic algorithm for the automatic selection of initial parameters of DBSCAN) was measured. The obtained results have shown a good performance, detecting 12 of 13 operational conditions, with an overall precision over 90%. 展开更多
关键词 clustering DBSCAN Factor analysis FBGs pattern recognition Strain field
原文传递
Circular object recognition based on shape parameters 被引量:1
6
作者 Chen Aijun Li Jinzong Zhu Bing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期199-204,共6页
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ... To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen. 展开更多
关键词 Circular object pattern recognition Shape parameter Region labeling Image segmentation
下载PDF
An Algorithm for Mining Gradual Moving Object Clusters Pattern From Trajectory Streams
7
作者 Yujie Zhang Genlin Ji +1 位作者 Bin Zhao Bo Sheng 《Computers, Materials & Continua》 SCIE EI 2019年第6期885-901,共17页
The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory strea... The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory streams is rapidly evolving,continuously created and cannot be stored indefinitely in memory,the existing approaches designed on static trajectory datasets are not suitable for discovering gradual moving object clusters pattern from trajectory streams.This paper proposes a novel algorithm of gradual moving object clusters pattern discovery from trajectory streams using sliding window models.By processing the trajectory data in current window,the mining algorithm can capture the trend and evolution of moving object clusters pattern.Firstly,the density peaks clustering algorithm is exploited to identify clusters of different snapshots.The stable relationship between relatively few moving objects is used to improve the clustering efficiency.Then,by intersecting clusters from different snapshots,the gradual moving object clusters pattern is updated.The relationship of clusters between adjacent snapshots and the gradual property are utilized to accelerate updating process.Finally,experiment results on two real datasets demonstrate that our algorithm is effective and efficient. 展开更多
关键词 Trajectory streams pattern mining moving object clusters pattern discovery of moving clusters pattern
下载PDF
K-Means Graph Database Clustering and Matching for Fingerprint Recognition
8
作者 Vaishali Pawar Mukesh Zaveri 《Intelligent Information Management》 2015年第4期242-251,共10页
The graph can contain huge amount of data. It is heavily used for pattern recognition and matching tasks like symbol recognition, information retrieval, data mining etc. In all these applications, the objects or under... The graph can contain huge amount of data. It is heavily used for pattern recognition and matching tasks like symbol recognition, information retrieval, data mining etc. In all these applications, the objects or underlying data are represented in the form of graph and graph based matching is performed. The conventional algorithms of graph matching have higher complexity. This is because the most of the applications have large number of sub graphs and the matching of these sub graphs becomes computationally expensive. In this paper, we propose a graph based novel algorithm for fingerprint recognition. In our work we perform graph based clustering which reduces the computational complexity heavily. In our algorithm, we exploit structural features of the fingerprint for K-means clustering of the database. The proposed algorithm is evaluated using realtime fingerprint database and the simulation results show that our algorithm outperforms the existing algorithm for the same task. 展开更多
关键词 pattern recognition FINGERPRINT MATCHING GRAPH MATCHING clustering
下载PDF
基于改进Deformable DETR模型的多源局部放电识别方法及其应用
9
作者 雷志鹏 彭川 +4 位作者 许子涵 姜宛廷 李传扬 吝伶艳 彭邦发 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期6248-6260,I0035,共14页
基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图。为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放... 基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图。为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放电数据,生成局部放电相位角解析和极坐标相位分布解析谱图数据集。在Deformable DETR模型中引入去噪训练任务和贝叶斯优化算法,优化了局部放电目标检测模型;编写局部放电谱图采集和识别程序,并使用优化后的局部放电Deformable DETR模型对单源和多源局部放电谱图进行识别。结果表明:局部放电Deformable DETR模型不仅可有效识别出单源和多源局部放电的类型,而且大幅提升了局部放电类型识别的收敛速度和精度等性能。在对真实绝缘缺陷电动机的局部放电谱图识别中,局部放电Deformable DETR模型的识别准确率达到91%,证明该模型在实际应用中的有效性。 展开更多
关键词 局部放电 模式识别 DeformableDETR 目标检测 多源局部放电
下载PDF
基于HPLC指纹图谱结合化学模式识别对葡萄醋的质量评价
10
作者 戴丽莉 李晓娟 赵翡翠 《新疆医科大学学报》 CAS 2024年第2期275-281,共7页
目的建立葡萄醋中有机酸成分的高效液相(High performance liquid phase,HPLC)指纹图谱,并结合化学模式识别对葡萄醋质量进行评价及为临床应用提供参考。方法采用HPLC法,以甲醇(A)∶0.5%磷酸水溶液(D)=1∶99洗脱,建立葡萄醋指纹图谱,同... 目的建立葡萄醋中有机酸成分的高效液相(High performance liquid phase,HPLC)指纹图谱,并结合化学模式识别对葡萄醋质量进行评价及为临床应用提供参考。方法采用HPLC法,以甲醇(A)∶0.5%磷酸水溶液(D)=1∶99洗脱,建立葡萄醋指纹图谱,同时测定琥珀酸的含量;采用相似度评价、聚类分析(Cluster analysis,CA)、主成分分析(Principal component analysis,PCA)和偏最小二乘-判别分析(Partial least squares discriminant analysis,PLS-DA)等化学模式识别对差异性特征成分进行筛选。结果15批葡萄醋样品的指纹图谱共有峰有11个,通过与混合对照品色谱峰进行比对,指认出6个共有峰,分别是酒石酸(1号峰),苹果酸(2号峰),琥珀酸(3号峰),富马酸(4号峰),绿原酸(9号峰),乙酸(11号峰);CA结果表明15批葡萄醋样品中各个化合物之间含量差异较大,即使是同一生产企业生产的不同批次葡萄醋其含量差异也较大;PCA结果显示葡萄醋共有峰含量差异的主要成分并非单一成分,而是前4种主成分共同的影响;PLS-DA结果表明筛选出的7、3、9、4号峰可作为鉴别和区分葡萄醋质量差异的标志物,其中包括共有峰3号峰(琥珀酸)、4号峰(富马酸)。结论采用指纹图谱结合化学模式识别技术可快速、有效地筛选出葡萄醋的差异性特征成分,为葡萄醋质量评价及临床应用提供参考。 展开更多
关键词 葡萄醋 指纹图谱 聚类分析 主成分分析 化学模式识别
下载PDF
基于UPLC指纹图谱及含量测定结合化学模式识别法比较不同产地枇杷花的差异 被引量:1
11
作者 胡孔兴 何鹏 +1 位作者 张萍 陈向涛 《中南药学》 CAS 2024年第4期1053-1058,共6页
目的 建立枇杷花的UPLC指纹图谱,测定枇杷花中4种化合物的含量,并采用化学模式识别法分析比较不同产地枇杷花的差异。方法 使用UPLC建立不同产地枇杷花的指纹图谱,测定金丝桃苷、绿原酸、异槲皮苷、槲皮苷的含量,对20批次的枇杷花的指... 目的 建立枇杷花的UPLC指纹图谱,测定枇杷花中4种化合物的含量,并采用化学模式识别法分析比较不同产地枇杷花的差异。方法 使用UPLC建立不同产地枇杷花的指纹图谱,测定金丝桃苷、绿原酸、异槲皮苷、槲皮苷的含量,对20批次的枇杷花的指纹图谱开展相似度评价、聚类分析、偏最小二乘法判别分析(OPLS-DA)及主成分分析,对不同产地枇杷花进行分类并筛选出差异标志成分。结果 建立了枇杷花的UPLC指纹图谱,标记出10个共有峰,指认出4个成分,20批枇杷花相似度为0.970~0.999。通过聚类分析和主成分分析可将不同产地的枇杷花分为两类,OPLS-DA分析结果显示金丝桃苷、绿原酸、异槲皮苷可作为评价不同产地枇杷花的差异标志成分。含量测定结果显示不同产地枇杷花的4种成分含量存在一定差异。结论 建立的枇杷花UPLC指纹图谱及成分定量方法高效稳定,化学模式识别分析方法结果可靠,可为枇杷花的质量研究提供参考。 展开更多
关键词 枇杷花 指纹图谱 聚类分析 化学模式识别
下载PDF
基于数据统计与化学模式识别分析的豆粕溶剂残留组分评价研究
12
作者 杨安源 何焜鹏 +3 位作者 林丹 肖小翠 庄俊钰 冯志强 《食品安全质量检测学报》 CAS 2024年第16期114-121,共8页
目的对市售不同用途豆粕中溶剂残留含量进行测定,分析豆粕中溶剂残留组分情况,并采用化学模式识别法分析比较不同豆粕的差异。方法参照GB 5009.262—2016《食品安全国家标准食品中溶剂残留量的测定》对32批次豆粕进行检测,并对豆粕数据... 目的对市售不同用途豆粕中溶剂残留含量进行测定,分析豆粕中溶剂残留组分情况,并采用化学模式识别法分析比较不同豆粕的差异。方法参照GB 5009.262—2016《食品安全国家标准食品中溶剂残留量的测定》对32批次豆粕进行检测,并对豆粕数据进行直方图、频次图、箱线图和分布检验统计,借助主成分分析和聚类分析对不同种类豆粕进行分类并筛选出差异标志组分。结果豆粕样品中溶剂残留为未检出~40.50 mg/kg,均低于GB 14932—2016《食品安全国家标准食品加工用粕类》限量;食用低温豆粕样品溶剂残留检出率36.4%,最高值31.50 mg/kg,食用高温豆粕样品溶剂残留检出率54.5%,最高值40.50 mg/kg;饲用豆粕样品溶剂残留检出率90.0%,最高值37.00mg/kg。通过对豆粕峰面积进行主成分分析、聚类分析等可将32批豆粕整体分为低温豆粕、高温豆粕和饲用豆粕,同时显示2-甲基戊烷和3-甲基戊烷对豆粕分类起到主导作用。结论豆粕的成分定量方法高效稳定,化学模式识别分析方法结果可靠,可为豆粕中溶剂残留情况及质量研究提供参考。 展开更多
关键词 豆粕 箱线图 分布拟合 聚类分析 主成分分析 化学模式识别
下载PDF
基于HPLC指纹图谱及化学识别模式的炒山楂质量评价
13
作者 段玺 汪芸兰 +3 位作者 雷璇 魏玄 唐莹莹 宋逍 《中国野生植物资源》 CSCD 2024年第10期1-8,共8页
目的:为炒山楂中药饮片的质量评价提供参考。方法:采用“中药色谱指纹图谱相似度评价系统”(2012版)建立不同产地炒山楂的指纹图谱进行相似度评价,并对共有峰进行成分指认,将炒山楂成分含量数据输入SPSS软件进行聚类分析和主成分分析,... 目的:为炒山楂中药饮片的质量评价提供参考。方法:采用“中药色谱指纹图谱相似度评价系统”(2012版)建立不同产地炒山楂的指纹图谱进行相似度评价,并对共有峰进行成分指认,将炒山楂成分含量数据输入SPSS软件进行聚类分析和主成分分析,并根据综合评分进行质量评价。结果:从建立的炒山楂指纹图谱中标定出5个共有峰,根据对照品图谱确定为5-羟甲基糠醛、新绿原酸、绿原酸、隐绿原酸和金丝桃苷;聚类分析将炒山楂样品分为4类;经主成分分析,提取出3个主成分,累计方差贡献率为90.433%,综合评分评价药材来源产地结果表明山东的炒山楂中药饮片质量较好。结论:本研究建立的炒山楂指纹图谱方法稳定、可靠,结合聚类分析、主成分分析对炒山楂的质量进行了多方面的综合评价,为炒山楂的质量评价提供了参考。 展开更多
关键词 炒山楂 化学模式识别 指纹图谱 聚类分析 主成分分析
下载PDF
4种薯类食品多项指标的灰色模式识别分析 被引量:1
14
作者 周利兵 侯守芳 《云南民族大学学报(自然科学版)》 CAS 2024年第1期56-62,共7页
选择我国不同地区红薯、山药、葛根、紫薯4种薯类食品作为研究对象,对食品多指标测定与综合评价.从燃烧热、燃烧稳定性、脂肪、灰分、粗纤维含量方面评价食品营养.测定4种食品燃烧热、燃烧稳定性、脂肪、灰分及粗纤维含量,并从食品营养... 选择我国不同地区红薯、山药、葛根、紫薯4种薯类食品作为研究对象,对食品多指标测定与综合评价.从燃烧热、燃烧稳定性、脂肪、灰分、粗纤维含量方面评价食品营养.测定4种食品燃烧热、燃烧稳定性、脂肪、灰分及粗纤维含量,并从食品营养方面用化学计量方法进行质量评价与分类.结果表明,4种薯类食品燃烧热大小顺序为:葛根>红薯>山药>紫薯,燃烧稳定性排序为:山药>葛根>紫薯>红薯,脂肪含量顺序为:葛根>紫薯>红薯>山药,灰分含量顺序为:葛根>山药>红薯>紫薯,粗纤维含量顺序为:紫薯>山药>葛根>红薯,多指标化学计量分析顺序为:山药>葛根>紫薯>红薯.这项研究为热重分析方法研究食品燃烧稳定性评价与研究提供理论支持,这项研究建立的多指标综合评价体系为食品营养评价提供一种新思路,这项研究为大规模开发食品资源以及食品分类研究提供有力地科学依据. 展开更多
关键词 食品营养 熵值法 热重分析 燃烧热 灰色模式识别 灰色关联系数聚类分析
下载PDF
基于数据驱动的无监测用户用电模式识别方法
15
作者 李凯 杨大伟 +3 位作者 张建业 马崇瑞 李德高 王慧 《计算机应用与软件》 北大核心 2024年第5期101-106,共6页
借助于终端用户侧安装的智能电表能够有效地分析其异常用电行为和用电模式,为填补在过渡期可能存在的用户数据缺失,提出一种基于数据驱动的无监测用户用电模式识别方法。利用装有智能电表用户的典型日负荷曲线历史数据提取典型用电模式... 借助于终端用户侧安装的智能电表能够有效地分析其异常用电行为和用电模式,为填补在过渡期可能存在的用户数据缺失,提出一种基于数据驱动的无监测用户用电模式识别方法。利用装有智能电表用户的典型日负荷曲线历史数据提取典型用电模式;对多时间尺度机器学习模型进行训练来估计用户用电量;采用递归贝叶斯学习和支路电流状态估计残差法,从无监测用户月度电费账单中获得日负荷曲线。采用实际系统的量测数据进行算例验证,仿真结果表明所提出方法能够快速而准确地识别出无监测用户的用电模式。 展开更多
关键词 用电模式识别 频谱聚类 递归贝叶斯学习
下载PDF
基于增量聚类的道路网络中移动对象聚集模式检测算法设计
16
作者 周怡 薛丹 唐琪琪 《湖南邮电职业技术学院学报》 2024年第3期39-44,74,共7页
随着位置获取技术的发展,人们采集了大量的移动对象轨迹数据,为了使交通管理精细化,利用这些数据来精确提取道路网中的拥堵或热点区域就变得越来越重要。提出一种基于增量聚类的移动对象聚集模式检测算法,以精确提取道路网络中的拥堵或... 随着位置获取技术的发展,人们采集了大量的移动对象轨迹数据,为了使交通管理精细化,利用这些数据来精确提取道路网中的拥堵或热点区域就变得越来越重要。提出一种基于增量聚类的移动对象聚集模式检测算法,以精确提取道路网络中的拥堵或热点区域。算法通过初始聚类和增量聚类更新聚类特征,并利用聚类特征计算聚类半径进行热点检测,通过实测数据和合成数据验证了算法有效性。结果表明,该算法能有效检测聚集模式并计算其生命周期,为道路网络拥堵和热点区域检测提供新方法。 展开更多
关键词 移动对象轨迹 增量聚类 聚集模式检测算法
下载PDF
Research of Underwater Bottom Object and Reverberation in Feature Space 被引量:7
17
作者 Xiukun Li Zhi Xia 《Journal of Marine Science and Application》 2013年第2期235-239,共5页
The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in featu... The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes. 展开更多
关键词 underwater bottom object pattern of reverberation feature clustering feature space underwater object detection
下载PDF
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
18
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
下载PDF
ORDERED-OBJECT-ORIENTED METHOD:A NEW APPROACH OF SAMPLE PART CALCULATION AND DESIGN
19
作者 李蓓智 《Journal of China Textile University(English Edition)》 EI CAS 1997年第1期6-11,共6页
This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive ... This paper proposed a new approach of sample part classification and design, a so called Or-dered-object-oriented method (O-O-O method). Based on the theory of neural networks, fuzzy clustering algorithm and adaptive pattern recognition, O-O-O method can be used to classify and design the sample parts automatically. The basic theory, the main step as well as the characteristics of the method are analysed. The construction of the ordered object in application is also presented in this paper. 展开更多
关键词 part classification NEURAL networks fuzzy clustering algorithm pattern recognition object-ORIENTED
下载PDF
Kernel Generalized Noise Clustering Algorithm
20
作者 武小红 周建江 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期96-101,共6页
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ... To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data. 展开更多
关键词 Fuzzy clustering pattern recognition Kernel methods Noise clustering Kernel generalized noise clustering
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部