A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inhe...A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.展开更多
When simulating or designing plate heat exchangers for multicomponent mixtures, most designers are often perplexed with the question on how to choose or estimate the physical property param- eters and hope to have a r...When simulating or designing plate heat exchangers for multicomponent mixtures, most designers are often perplexed with the question on how to choose or estimate the physical property param- eters and hope to have a reliable database that could be adopted. The commercial codes HYSYS supply the physical property package on over 1500 pure substances and over 16 000 binary coefficients for them. This work has briefly presented an efficient communication interface based on the Microsoft Component Object Model (COM) between inner plate heat exchanger simulation codes and the HYSYS package. The application of a custom-made HYSYS-COM interface has shown high efficiency, such as significant reduction of time needed for evaluating each process stream's properties. This automation method can be conveniently extended to further optimization study for any specific operation device such as heat transfers, columns, and other facilities.展开更多
In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational meth...In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS.展开更多
This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DM...This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DMC), which is based on RDBMS/ORDBMS, a data analysis component (DAC) and a data render component (DRC). DMC can manage massive multi-scale data expressed at various reference frames within a pyramid database and can support fast access to data at variable resolution. DAC integrates many useful applied analytic functions whose results can be overlaid with the 3D scene rendered by DRC. DRC provides view-dependent data paging with the support of the underlying DMC and organizes the potential visible data at different levels into rendering.展开更多
Microsoft DNA(Distributed interNet Application) has p rovided a effective framework of combination PC with the Internet perfectly; In addition, this open framework hase also given the integration of multilingual co mp...Microsoft DNA(Distributed interNet Application) has p rovided a effective framework of combination PC with the Internet perfectly; In addition, this open framework hase also given the integration of multilingual co mponents a strong managing platform. This article has deeply analysed the main technologys of Microsoft DNA, involve COM basic technology, framework of DNA, Microfost UDA(Universal Data Access),com ponent management with COM+, asynchronous communication with MSMQ(M icrosoft Message Queue). In addition, based on a comparative analysise with the C/S(Client/Server) framework, the author has illustrated the excellency of the Multi-tier framework of Microsoft DNA.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40271056) Hubei Provin- cial Natural Science Foundation of China (No. 99J123).
文摘A SOTER management system was developed by analyzing, designing, programming, testing, repeated proceeding and progressing based on the object-oriented method. The function of the attribute database management is inherited and expanded in the new system. The integrity and security of the SOTER database are enhanced. The attribute database management, the spatial database management and the model base are integrated into SOTER based on the component object model (COM), and the graphical user interface (GUI) for Windows is used to interact with clients, thus being easy to create and maintain the SOTER, and convenient to promote the quantification and automation of soil information application.
基金the National High Technology Research and Development Program of China(863 Program)(2006AA05Z216)the DUT Youth Fond
文摘When simulating or designing plate heat exchangers for multicomponent mixtures, most designers are often perplexed with the question on how to choose or estimate the physical property param- eters and hope to have a reliable database that could be adopted. The commercial codes HYSYS supply the physical property package on over 1500 pure substances and over 16 000 binary coefficients for them. This work has briefly presented an efficient communication interface based on the Microsoft Component Object Model (COM) between inner plate heat exchanger simulation codes and the HYSYS package. The application of a custom-made HYSYS-COM interface has shown high efficiency, such as significant reduction of time needed for evaluating each process stream's properties. This automation method can be conveniently extended to further optimization study for any specific operation device such as heat transfers, columns, and other facilities.
文摘In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS.
文摘This paper presents a component object model (COM) based framework for managing, analyzing and visualizing massive multi-scale digital elevation models (DEMs). The framework consists of a data management component (DMC), which is based on RDBMS/ORDBMS, a data analysis component (DAC) and a data render component (DRC). DMC can manage massive multi-scale data expressed at various reference frames within a pyramid database and can support fast access to data at variable resolution. DAC integrates many useful applied analytic functions whose results can be overlaid with the 3D scene rendered by DRC. DRC provides view-dependent data paging with the support of the underlying DMC and organizes the potential visible data at different levels into rendering.
文摘Microsoft DNA(Distributed interNet Application) has p rovided a effective framework of combination PC with the Internet perfectly; In addition, this open framework hase also given the integration of multilingual co mponents a strong managing platform. This article has deeply analysed the main technologys of Microsoft DNA, involve COM basic technology, framework of DNA, Microfost UDA(Universal Data Access),com ponent management with COM+, asynchronous communication with MSMQ(M icrosoft Message Queue). In addition, based on a comparative analysise with the C/S(Client/Server) framework, the author has illustrated the excellency of the Multi-tier framework of Microsoft DNA.