期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-Layer Attention Feature Pyramid Network for Small Object Detection
1
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
下载PDF
Objectness Region Enhancement Networks for Scene Parsing
2
作者 Xin-Yu Ou Ping Li +2 位作者 He-Fei Ling Si Liu Tian-Jiang Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期683-700,共18页
Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep ... Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning. Different from many existing methods, our method focuses on putting forward some techniques to improve the existing algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It exploits the detection module to produce object region proposals with category probability, and these regions are used to weight the parsing feature map directly. 'Extra background' category, as a specific category, is often attached to the category space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified on the Cityscapes dataset. 展开更多
关键词 objectness region enhancement black-hole filling scene parsing instance enhancement objectness region proposal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部