In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
The prototype system Object-Oriented Computer Aided Process Planning(OOCAP),which aims at simulating machine process planning for designed componentsby constructing a knowledge based system in an Object-Oriented envir...The prototype system Object-Oriented Computer Aided Process Planning(OOCAP),which aims at simulating machine process planning for designed componentsby constructing a knowledge based system in an Object-Oriented environment Smalltalkand is implemented in PS/2 80,is presented in this paper.The integration of rules,factsand operations in objects is the key concept in the system.Additionally,the system simu-lares machining processes and shows the whole procedure from selecting materials to get-ring products with animations.展开更多
An object-oriented prototype expert system ORDEES for off-line trouble-shooting of refinery distillation columns is developed. It is found that highly modular knowledge base can be designed, and different types of dat...An object-oriented prototype expert system ORDEES for off-line trouble-shooting of refinery distillation columns is developed. It is found that highly modular knowledge base can be designed, and different types of data (e.g., graphs, numberical data, and algorithms) may be manipulated, by using object-oriented knowledge representation. In addition, a method termed Object-Oriented Multifunction Switcher is proposed for building multifunction expert systems. The results of the study are expected to be useful for designing multifunction expert systems for complex petroleum refining and petro-chemical processes with many kinds of equipment.展开更多
Focusing on the development of electronic-mart (e-mart) based on object-oriented databases (OODB), the concepts of integrated electronic-commerce (e-commerce) environment and e-mart are introduced, and the basic chara...Focusing on the development of electronic-mart (e-mart) based on object-oriented databases (OODB), the concepts of integrated electronic-commerce (e-commerce) environment and e-mart are introduced, and the basic characteristics of OODB Jasmine are described. In addition, the database mode and hierarchy of e-mart are discussed in detail.展开更多
An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writ...An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.展开更多
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
The concept of intelligent integrated network management (IINM) is briefly introduced. In order to analyze, design and implement IINM successfully, object oriented approach is testified to be an effective and efficien...The concept of intelligent integrated network management (IINM) is briefly introduced. In order to analyze, design and implement IINM successfully, object oriented approach is testified to be an effective and efficient way. In this paper, object oriented technique is applied to the structural model of IINM system, The Domain object class and the MU object class are used to represent the manager and the managed resources. Especially, NM IA is introduced which is a special object class with intelligent behaviors to manage the resources efficiently.展开更多
An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introdu...An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.展开更多
This paper discusses the design concept and method about window based and object oriented Graphic User Interface(GUI),and describes the definition of each class in detail. It is developed with Watcom C ++ in...This paper discusses the design concept and method about window based and object oriented Graphic User Interface(GUI),and describes the definition of each class in detail. It is developed with Watcom C ++ in DOS environment.The GUI can be redeveloped conveniently and effectively by users.It consists of window,popup menu,icon,button and other components.展开更多
An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, ...An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.展开更多
The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set u...The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set up adaptive C2 teams. In this paper, the relational problems about distributed C2 organizational structure adaptation are discussed, and the methodology for team decision making design based on the object oriented technique is studied.展开更多
Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of obje...Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.展开更多
Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a sof...Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.展开更多
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
文摘The prototype system Object-Oriented Computer Aided Process Planning(OOCAP),which aims at simulating machine process planning for designed componentsby constructing a knowledge based system in an Object-Oriented environment Smalltalkand is implemented in PS/2 80,is presented in this paper.The integration of rules,factsand operations in objects is the key concept in the system.Additionally,the system simu-lares machining processes and shows the whole procedure from selecting materials to get-ring products with animations.
文摘An object-oriented prototype expert system ORDEES for off-line trouble-shooting of refinery distillation columns is developed. It is found that highly modular knowledge base can be designed, and different types of data (e.g., graphs, numberical data, and algorithms) may be manipulated, by using object-oriented knowledge representation. In addition, a method termed Object-Oriented Multifunction Switcher is proposed for building multifunction expert systems. The results of the study are expected to be useful for designing multifunction expert systems for complex petroleum refining and petro-chemical processes with many kinds of equipment.
文摘Focusing on the development of electronic-mart (e-mart) based on object-oriented databases (OODB), the concepts of integrated electronic-commerce (e-commerce) environment and e-mart are introduced, and the basic characteristics of OODB Jasmine are described. In addition, the database mode and hierarchy of e-mart are discussed in detail.
文摘An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
文摘The concept of intelligent integrated network management (IINM) is briefly introduced. In order to analyze, design and implement IINM successfully, object oriented approach is testified to be an effective and efficient way. In this paper, object oriented technique is applied to the structural model of IINM system, The Domain object class and the MU object class are used to represent the manager and the managed resources. Especially, NM IA is introduced which is a special object class with intelligent behaviors to manage the resources efficiently.
文摘An object oriented data modelling in computer aided design (CAD) databases is focused. Starting with the discussion of data modelling requirements for CAD applications, appropriate data modelling features are introduced herewith. A feasible approach to select the “best” data model for an application is to analyze the data which has to be stored in the database. A data model is appropriate for modelling a given task if the information of the application environment can be easily mapped to the data model. Thus, the involved data are analyzed and then object oriented data model appropriate for CAD applications are derived. Based on the reviewed object oriented techniques applied in CAD, object oriented data modelling in CAD is addressed in details. At last 3D geometrical data models and implementation of their data model using the object oriented method are presented.
文摘This paper discusses the design concept and method about window based and object oriented Graphic User Interface(GUI),and describes the definition of each class in detail. It is developed with Watcom C ++ in DOS environment.The GUI can be redeveloped conveniently and effectively by users.It consists of window,popup menu,icon,button and other components.
基金Project(2009CB226107)supported by the National Basic Research Program of China
文摘An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.
文摘The modern war features a highly distributed coordination. In the face of great time constrains, it is important to change command organizations to adapt to the real environment. Therefore it's a key step to set up adaptive C2 teams. In this paper, the relational problems about distributed C2 organizational structure adaptation are discussed, and the methodology for team decision making design based on the object oriented technique is studied.
文摘Image classification is one of the most basic operations of digital image processing. The present review focuses on the strengths and weaknesses of traditional pixel-based classification (PBC) and the advances of object-oriented classification (OOC) algorithms employed for the extraction of information from remotely sensed satellite imageries. The state-of-the-art classifiers are reviewed for their potential usage in urban remote sensing (RS), with a special focus on cryospheric applications. Generally, classifiers for information extraction can be divided into three catalogues: 1) based on the type of learning (supervised and unsupervised), 2) based on assumptions on data distribution (parametric and non-parametric) and, 3) based on the number of outputs for each spatial unit (hard and soft). The classification methods are broadly based on the PBC or the OOC approaches. Both methods have their own advantages and disadvantages depending upon their area of application and most importantly the RS datasets that are used for information extraction. Classification algorithms are variedly explored in the cryosphere for extracting geospatial information for various logistic and scientific applications, such as to understand temporal changes in geographical phenomena. Information extraction in cryospheric regions is challenging, accounting to the very similar and conflicting spectral responses of the features present in the region. The spectral responses of snow and ice, water, and blue ice, rock and shadow are a big challenge for the pixel-based classifiers. Thus, in such cases, OOC approach is superior for extracting information from the cryospheric regions. Also, ensemble classifiers and customized spectral index ratios (CSIR) proved extremely good approaches for information extraction from cryospheric regions. The present review would be beneficial for developing new classifiers in the cryospheric environment for better understanding of spatial-temporal changes over long time scales.
文摘Various code development platforms, such as the ATHENA Framework [1] of the ATLAS [2] experiment encounter lengthy compilation/linking times. To augment this situation, the IRIS Development Platform was built as a software development framework acting as compiler, cross-project linker and data fetcher, which allow hot-swaps in order to compare various versions of software under test. The flexibility fostered by IRIS allowed modular exchange of software libraries among developers, making it a powerful development tool. The IRIS platform used input data ROOT-ntuples [3];however a new data model is sought, in line with the facilities offered by IRIS. The schematic of a possible new data structuring—as a user implemented object oriented data base, is presented.