Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great ...Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.展开更多
The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland an...The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.展开更多
The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient ...The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.展开更多
An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovat...An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.展开更多
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot...Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.展开更多
With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective m...With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective method.The object-based hierarchical classification using remote sensing indices(OBH-RSI)for coastal wetland is proposed to achieve fine classification of coastal wetland.First,the original categories are divided into four groups according to the category characteristics.Second,the training and test maps of each group are extracted according to the remote sensing indices.Third,four groups are passed through the classifier in order.Finally,the results of the four groups are combined to get the final classification result map.The experimental results demonstrate that the overall accuracy,average accuracy and kappa coefficient of the proposed strategy are over 94%using the Yellow River Delta dataset.展开更多
As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. S...As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.展开更多
Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image ...Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image classification method for its comparatively low accuracy. In this paper, an object-based image analysis(OBIA)method was presented to map intra-reef geomorphology of coral reefs in the Xisha Islands, China using Landsat 8satellite imagery. Following the work of the Millennium Coral Reef Mapping Project, a regional reef class hierarchy with ten geomorphic classes was first defined. Then, incorporating the hierarchical concept and integrating the spectral and additional spatial information such as context, shape and contextual relationships, a large-scale geomorphic map was produced by OBIA with accuracies generally more than 80%. Although the robustness of OBIA has been validated in the applications of coral reef mapping from individual reefs to reef system in this paper, further work is still required to improve its transferability.展开更多
The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problem...The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.展开更多
Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect n...Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect not only the local environment but also the whole country with frequent and heavy floods. Remote sensing (RS) from Satellites and Airplanes used in Geographical Information Systems (GIS) are technologies that can aid in understanding the on-going environmental processes. Furthermore, help researchers to observe, understand, forecast and suggest response to changes that occur. It can be natural disasters or man-made disasters and human induced factors. Still analysis accuracy issues play a vital role for the formulation of any strategy. To achieve better results, object based analysis methods have been tested. Various algorithms are developed by the analysts to calculate the magnitude of land cover changes. However, they must be evaluated for each environment that is under observation as mountainous areas. Here were object-based methods evaluated in comparison with pixel based. Landslides, soil moisture, soil permeability, snow cover and vegetation cover can be effectively monitored by those methods.展开更多
File labeling techniques have a long history in analyzing the anthological trends in computational linguistics.The situation becomes worse in the case of files downloaded into systems from the Internet.Currently,most ...File labeling techniques have a long history in analyzing the anthological trends in computational linguistics.The situation becomes worse in the case of files downloaded into systems from the Internet.Currently,most users either have to change file names manually or leave a meaningless name of the files,which increases the time to search required files and results in redundancy and duplications of user files.Currently,no significant work is done on automated file labeling during the organization of heterogeneous user files.A few attempts have been made in topic modeling.However,one major drawback of current topic modeling approaches is better results.They rely on specific language types and domain similarity of the data.In this research,machine learning approaches have been employed to analyze and extract the information from heterogeneous corpus.A different file labeling technique has also been used to get the meaningful and`cohesive topic of the files.The results show that the proposed methodology can generate relevant and context-sensitive names for heterogeneous data files and provide additional insight into automated file labeling in operating systems.展开更多
In the Big Data era,numerous sources and environments generate massive amounts of data.This enormous amount of data necessitates specialized advanced tools and procedures that effectively evaluate the information and ...In the Big Data era,numerous sources and environments generate massive amounts of data.This enormous amount of data necessitates specialized advanced tools and procedures that effectively evaluate the information and anticipate decisions for future changes.Hadoop is used to process this kind of data.It is known to handle vast volumes of data more efficiently than tiny amounts,which results in inefficiency in the framework.This study proposes a novel solution to the problem by applying the Enhanced Best Fit Merging algorithm(EBFM)that merges files depending on predefined parameters(type and size).Implementing this algorithm will ensure that the maximum amount of the block size and the generated file size will be in the same range.Its primary goal is to dynamically merge files with the stated criteria based on the file type to guarantee the efficacy and efficiency of the established system.This procedure takes place before the files are available for the Hadoop framework.Additionally,the files generated by the system are named with specific keywords to ensure there is no data loss(file overwrite).The proposed approach guarantees the generation of the fewest possible large files,which reduces the input/output memory burden and corresponds to the Hadoop framework’s effectiveness.The findings show that the proposed technique enhances the framework’s performance by approximately 64%while comparing all other potential performance-impairing variables.The proposed approach is implementable in any environment that uses the Hadoop framework,not limited to smart cities,real-time data analysis,etc.展开更多
Working with files and the safety of information has always been relevant, especially in financial institutions where the requirements for the safety of information and security are especially important. And in today...Working with files and the safety of information has always been relevant, especially in financial institutions where the requirements for the safety of information and security are especially important. And in today’s conditions, when an earthquake can destroy the floor of a city in an instant, or when a missile hits an office and all servers turn into scrap metal, the issue of data safety becomes especially important. Also, you can’t put the cost of the software and the convenience of working with files in last place. Especially if an office worker needs to find the necessary information on a client, a financial contract or a company’s financial product in a few seconds. Also, during the operation of computer equipment, failures are possible, and some of them can lead to partial or complete loss of information. In this paper, it is proposed to create another level of abstraction for working with the file system, which will be based on a relational database as a storage of objects and access rights to objects. Also considered are possible protocols for transferring data to other programs that work with files, these can be both small sites and the operating system itself. This article will be especially interesting for financial institutions or companies operating in the banking sector. The purpose of this article is an attempt to introduce another level of abstraction for working with files. A level that is completely abstracted from the storage medium.展开更多
Byte-addressable non-volatile memory(NVM),as a new participant in the storage hierarchy,gives extremely high performance in storage,which forces changes to be made on current filesystem designs.Page cache,once a signi...Byte-addressable non-volatile memory(NVM),as a new participant in the storage hierarchy,gives extremely high performance in storage,which forces changes to be made on current filesystem designs.Page cache,once a significant mechanism filling the performance gap between Dynamic Random Access Memory(DRAM)and block devices,is now a liability that heavily hinders the writing performance of NVM filesystems.Therefore state-of-the-art NVM filesystems leverage the direct access(DAX)technology to bypass the page cache entirely.However,the DRAM still provides higher bandwidth than NVM,which prevents skewed read workloads from benefiting from a higher bandwidth of the DRAM and leads to sub-optimal performance for the system.In this paper,we propose RCache,a readintensive workload-aware page cache for NVM filesystems.Different from traditional caching mechanisms where all reads go through DRAM,RCache uses a tiered page cache design,including assigning DRAM and NVM to hot and cold data separately,and reading data from both sides.To avoid copying data to DRAM in a critical path,RCache migrates data from NVM to DRAM in a background thread.Additionally,RCache manages data in DRAM in a lock-free manner for better latency and scalability.Evaluations on Intel Optane Data Center(DC)Persistent Memory Modules show that,compared with NOVA,RCache achieves 3 times higher bandwidth for read-intensive workloads and introduces little performance loss for write operations.展开更多
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070503)the National Key Research and Development Program of China(2021YFD1500100)+2 种基金the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University (20R04)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(CASPLOS-CCSI)a PhD studentship ‘‘Deep Learning in massive area,multi-scale resolution remotely sensed imagery”(EAA7369),sponsored by Lancaster University and Ordnance Survey (the national mapping agency of Great Britain)。
文摘Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.
文摘The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.
文摘The detection of impervious surface (IS) in heterogeneous urban areas is one of the most challenging tasks in urban remote sensing. One of the limitations in IS detection at the parcel level is the lack of sufficient training data. In this study, a generic model of spatial distribution of roof materials is considered to overcome this limitation. A generic model that is based on spectral, spatial and textural information which is extracted from available training data is proposed. An object-based approach is used to extract the information inherent in the image. Furthermore, linear discriminant analysis is used for dimensionality reduction and to discriminate between different spatial, spectral and textural attributes. The generic model is composed of a discriminant function based on linear combinations of the predictor variables that provide the best discrimination among the groups. The discriminate analysis result shows that of the 54 attributes extracted from the WorldView-2 image, only 13 attributes related to spatial, spectral and textural information are useful for discriminating different roof materials. Finally, this model is applied to different WorldView-2 images from different areas and proves that this model has good potential to predict roof materials from the WorldView-2 images without using training data.
基金The National Key Research and Development Program of China(No.2018YFC0407900)The National Natural Science Foundation of China(No.41774003)+2 种基金The Natural Science Foundation of Jiangsu Province(No.BK20171432)The Fundamental Research Funds for the Central Universities(No.2018B177142019B60714)。
文摘An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.
文摘Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.
基金supported by the Beijing Natural Science Foundation(No.JQ20021)the National Natural Science Foundation of China(Nos.61922013,61421001 and U1833203)the Remote Sensing Monitoring Project of Geographical Elements in Shandong Yellow River Delta National Nature Reserve。
文摘With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective method.The object-based hierarchical classification using remote sensing indices(OBH-RSI)for coastal wetland is proposed to achieve fine classification of coastal wetland.First,the original categories are divided into four groups according to the category characteristics.Second,the training and test maps of each group are extracted according to the remote sensing indices.Third,four groups are passed through the classifier in order.Finally,the results of the four groups are combined to get the final classification result map.The experimental results demonstrate that the overall accuracy,average accuracy and kappa coefficient of the proposed strategy are over 94%using the Yellow River Delta dataset.
文摘As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.
基金The National Natural Science Foundation of China under contract No.41201328the Science Foundation for Young Scholars of China’s State Oceanic Administration under contract No.2013415
文摘Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image classification method for its comparatively low accuracy. In this paper, an object-based image analysis(OBIA)method was presented to map intra-reef geomorphology of coral reefs in the Xisha Islands, China using Landsat 8satellite imagery. Following the work of the Millennium Coral Reef Mapping Project, a regional reef class hierarchy with ten geomorphic classes was first defined. Then, incorporating the hierarchical concept and integrating the spectral and additional spatial information such as context, shape and contextual relationships, a large-scale geomorphic map was produced by OBIA with accuracies generally more than 80%. Although the robustness of OBIA has been validated in the applications of coral reef mapping from individual reefs to reef system in this paper, further work is still required to improve its transferability.
文摘The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.
文摘Changing climate has a great impact on northern area of Pakistan's environment and is more prone to environmental changes impacts than rest of the country due to its high elevation. However, melting glaciers effect not only the local environment but also the whole country with frequent and heavy floods. Remote sensing (RS) from Satellites and Airplanes used in Geographical Information Systems (GIS) are technologies that can aid in understanding the on-going environmental processes. Furthermore, help researchers to observe, understand, forecast and suggest response to changes that occur. It can be natural disasters or man-made disasters and human induced factors. Still analysis accuracy issues play a vital role for the formulation of any strategy. To achieve better results, object based analysis methods have been tested. Various algorithms are developed by the analysts to calculate the magnitude of land cover changes. However, they must be evaluated for each environment that is under observation as mountainous areas. Here were object-based methods evaluated in comparison with pixel based. Landslides, soil moisture, soil permeability, snow cover and vegetation cover can be effectively monitored by those methods.
文摘File labeling techniques have a long history in analyzing the anthological trends in computational linguistics.The situation becomes worse in the case of files downloaded into systems from the Internet.Currently,most users either have to change file names manually or leave a meaningless name of the files,which increases the time to search required files and results in redundancy and duplications of user files.Currently,no significant work is done on automated file labeling during the organization of heterogeneous user files.A few attempts have been made in topic modeling.However,one major drawback of current topic modeling approaches is better results.They rely on specific language types and domain similarity of the data.In this research,machine learning approaches have been employed to analyze and extract the information from heterogeneous corpus.A different file labeling technique has also been used to get the meaningful and`cohesive topic of the files.The results show that the proposed methodology can generate relevant and context-sensitive names for heterogeneous data files and provide additional insight into automated file labeling in operating systems.
基金This research was supported by the Universiti Sains Malaysia(USM)and the ministry of Higher Education Malaysia through Fundamental Research Grant Scheme(FRGS-Grant No:FRGS/1/2020/TK0/USM/02/1).
文摘In the Big Data era,numerous sources and environments generate massive amounts of data.This enormous amount of data necessitates specialized advanced tools and procedures that effectively evaluate the information and anticipate decisions for future changes.Hadoop is used to process this kind of data.It is known to handle vast volumes of data more efficiently than tiny amounts,which results in inefficiency in the framework.This study proposes a novel solution to the problem by applying the Enhanced Best Fit Merging algorithm(EBFM)that merges files depending on predefined parameters(type and size).Implementing this algorithm will ensure that the maximum amount of the block size and the generated file size will be in the same range.Its primary goal is to dynamically merge files with the stated criteria based on the file type to guarantee the efficacy and efficiency of the established system.This procedure takes place before the files are available for the Hadoop framework.Additionally,the files generated by the system are named with specific keywords to ensure there is no data loss(file overwrite).The proposed approach guarantees the generation of the fewest possible large files,which reduces the input/output memory burden and corresponds to the Hadoop framework’s effectiveness.The findings show that the proposed technique enhances the framework’s performance by approximately 64%while comparing all other potential performance-impairing variables.The proposed approach is implementable in any environment that uses the Hadoop framework,not limited to smart cities,real-time data analysis,etc.
文摘Working with files and the safety of information has always been relevant, especially in financial institutions where the requirements for the safety of information and security are especially important. And in today’s conditions, when an earthquake can destroy the floor of a city in an instant, or when a missile hits an office and all servers turn into scrap metal, the issue of data safety becomes especially important. Also, you can’t put the cost of the software and the convenience of working with files in last place. Especially if an office worker needs to find the necessary information on a client, a financial contract or a company’s financial product in a few seconds. Also, during the operation of computer equipment, failures are possible, and some of them can lead to partial or complete loss of information. In this paper, it is proposed to create another level of abstraction for working with the file system, which will be based on a relational database as a storage of objects and access rights to objects. Also considered are possible protocols for transferring data to other programs that work with files, these can be both small sites and the operating system itself. This article will be especially interesting for financial institutions or companies operating in the banking sector. The purpose of this article is an attempt to introduce another level of abstraction for working with files. A level that is completely abstracted from the storage medium.
基金supported by ZTE Industry⁃University⁃Institute Coopera⁃tion Funds under Grant No.HC⁃CN⁃20181128026.
文摘Byte-addressable non-volatile memory(NVM),as a new participant in the storage hierarchy,gives extremely high performance in storage,which forces changes to be made on current filesystem designs.Page cache,once a significant mechanism filling the performance gap between Dynamic Random Access Memory(DRAM)and block devices,is now a liability that heavily hinders the writing performance of NVM filesystems.Therefore state-of-the-art NVM filesystems leverage the direct access(DAX)technology to bypass the page cache entirely.However,the DRAM still provides higher bandwidth than NVM,which prevents skewed read workloads from benefiting from a higher bandwidth of the DRAM and leads to sub-optimal performance for the system.In this paper,we propose RCache,a readintensive workload-aware page cache for NVM filesystems.Different from traditional caching mechanisms where all reads go through DRAM,RCache uses a tiered page cache design,including assigning DRAM and NVM to hot and cold data separately,and reading data from both sides.To avoid copying data to DRAM in a critical path,RCache migrates data from NVM to DRAM in a background thread.Additionally,RCache manages data in DRAM in a lock-free manner for better latency and scalability.Evaluations on Intel Optane Data Center(DC)Persistent Memory Modules show that,compared with NOVA,RCache achieves 3 times higher bandwidth for read-intensive workloads and introduces little performance loss for write operations.