In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and elect...Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.展开更多
To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent im...To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.展开更多
Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the ana...Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the analysis and interpretation of hyperspectral images a challenge.Feature extraction is a very important step for hyperspectral image processing.Feature extraction methods aim at reducing the dimension of data,while preserving as much information as possible.Particularly,nonlinear feature extraction methods (e.g.kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing,due to their good preservation of high-order structures of the original data.However,conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction,and this leads to poor performances for post-applications.This paper proposes a novel nonlinear feature extraction method for hyperspectral images.Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window),the proposed method explores the use of image segmentation.The approach benefits both noise fraction estimation and information preservation,and enables a significant improvement for classification.Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method.Compared to conventional KMNF,the improvements of the method on two hyperspectral image classification are 8 and 11%.This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required.展开更多
利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分...利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。展开更多
In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the...In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the displays in: establish facial expression model and sentiment classifi cation, and put them with the changes in the facial features and expressions. Face is a fl exible body instead of rigid body, it is diffi cult to relate facial movement and facial expression change, according to the characteristics of the face image sequence established dynamic expression model that is a complete description of the dynamic expression of the process. Under this condition, in this paper, we propose the novel perspectives of the issues that are meaningful and innovative.展开更多
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia,Under Grant No. (G:146-830-1441).
文摘Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.
基金Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704c), the National Science Technology Support Program of China (No. 2013BAH03B01), and the Zhejiang Provincial Natural Science Foundation of China (No. LY14F020028)
文摘To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.
基金the National Natural Science Foundation of China [Grant Number 41722108],(Grant Number 91638201)%FWO project:data fusion for image analysis in remote sensing(Grant Number G037115N)
文摘Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers.However,the increasing spectral dimensions,as well as the information redundancy,make the analysis and interpretation of hyperspectral images a challenge.Feature extraction is a very important step for hyperspectral image processing.Feature extraction methods aim at reducing the dimension of data,while preserving as much information as possible.Particularly,nonlinear feature extraction methods (e.g.kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing,due to their good preservation of high-order structures of the original data.However,conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction,and this leads to poor performances for post-applications.This paper proposes a novel nonlinear feature extraction method for hyperspectral images.Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window),the proposed method explores the use of image segmentation.The approach benefits both noise fraction estimation and information preservation,and enables a significant improvement for classification.Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method.Compared to conventional KMNF,the improvements of the method on two hyperspectral image classification are 8 and 11%.This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required.
文摘利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。
文摘In this paper, we conduct research on novel and new facial expression modelling method. Although human facial expression recognition ability is stronger, but the computer to implement is a lot of diffi culties and the displays in: establish facial expression model and sentiment classifi cation, and put them with the changes in the facial features and expressions. Face is a fl exible body instead of rigid body, it is diffi cult to relate facial movement and facial expression change, according to the characteristics of the face image sequence established dynamic expression model that is a complete description of the dynamic expression of the process. Under this condition, in this paper, we propose the novel perspectives of the issues that are meaningful and innovative.