期刊文献+
共找到3,248篇文章
< 1 2 163 >
每页显示 20 50 100
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
1
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Carbon efficiency evaluation method for urban energy system with multiple energy complementary
2
作者 Xianan Jiao Jiekang Wu +1 位作者 Yunshou Mao Mengxuan Yan 《Global Energy Interconnection》 EI CSCD 2024年第2期142-154,共13页
Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple compleme... Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources. 展开更多
关键词 Urban energy systems(UESs) Multiple energy complementary system Carbon efficiency evaluation Data downscaling Subjective and objective weight Gray correlation analysis
下载PDF
Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows
3
作者 Fletcher Wadsworth Suresh S. Muknahallipatna Khaled Ksaibati 《Journal of Intelligent Learning Systems and Applications》 2024年第2期107-142,共36页
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst... In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance. 展开更多
关键词 Convolutional Neural Networks Residual Networks Object Detection Image Processing Thermal Imaging
下载PDF
Patterns of Interactions of the Complex City System:Emotional Urban Objects as Triggering Agents-A Secondary Publication
4
作者 O.A.Gonzalez Liliana Beatriz Sosa Compeán 《Journal of World Architecture》 2024年第1期45-53,共9页
This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how... This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how certain urban objects can act as emotional agents and how these events affect the urban system as a whole.An adaptive complex systems perspective is used to analyze these patterns.The results show patterns in the processes and dynamics that occur in cities based on the objects that affect the emotions of the people who live there.These patterns depend on the characteristics of the emotional charge of urban objects,but they can be generalized in the following process:(1)immediate reaction by some individuals;(2)emotions are generated at the individual level which begins to generalize,permuting to a collective emotion;(3)a process of reflection is detonated in some individuals from the reading of collective emotions;(4)integration/significance in the community both at the individual and collective level,on the concepts,roles and/or functions that give rise to the process in the system.Therefore,it is clear that emotions play a significant role in the development of cities and these aspects should be considered in the design strategies of all kinds of projects for the city.Future extensions of this work could include a deeper analysis of specific emotional events in urban environments,as well as possible implications for urban policy and decision making. 展开更多
关键词 Emotional events Urban objects Complex adaptive systems Adaptive complex systems City
下载PDF
Realtime Object Detection Through M-ResNet in Video Surveillance System 被引量:1
5
作者 S.Prabu J.M.Gnanasekar 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2257-2271,共15页
Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.Ho... Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection. 展开更多
关键词 Object detection ResNet video survilence image processing object quality
下载PDF
The concept of sUAS/DL-based system for detecting and classifying abandoned small firearms
6
作者 Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期23-31,共9页
Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployabl... Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployable small unmanned aerial systems(s UAS)in conjunction with powerful deep learning(DL)based object detection models are expected to play an important role for this application.To prove overall feasibility of this approach,this paper discusses some aspects of designing and testing of an automated detection system to locate and identify small firearms left at the training range or at the battlefield.Such a system is envisioned to involve an s UAS equipped with a modern electro-optical(EO)sensor and relying on a trained convolutional neural network(CNN).Previous study by the authors devoted to finding projectiles on the ground revealed certain challenges such as small object size,changes in aspect ratio and image scale,motion blur,occlusion,and camouflage.This study attempts to deal with these challenges in a realistic operational scenario and go further by not only detecting different types of firearms but also classifying them into different categories.This study used a YOLOv2CNN(Res Net-50 backbone network)to train the model with ground truth data and demonstrated a high mean average precision(m AP)of 0.97 to detect and identify not only small pistols but also partially occluded rifles. 展开更多
关键词 Small firearms Object detection Deep learning Small unmanned aerial systems
下载PDF
Data Utilization-Based Adaptive Data Management Method for Distributed Storage System in WAN Environment
7
作者 Sanghyuck Nam Jaehwan Lee +2 位作者 Kyoungchan Kim Mingyu Jo Sangoh Park 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3457-3469,共13页
Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for tradition... Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing. 展开更多
关键词 Distributed system distributed storage distributed computing object storage
下载PDF
Adaptive Consistent Management to Prevent System Collapse on Shared Object Manipulation in Mixed Reality
8
作者 Jun Lee Hyun Kwon 《Computers, Materials & Continua》 SCIE EI 2023年第4期2025-2042,共18页
A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the ... A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time. 展开更多
关键词 Mixed reality upper body motion recognition shared object manipulation adaptive task concurrency control
下载PDF
Delivery Invoice Information Classification System for Joint Courier Logistics Infrastructure
9
作者 Youngmin Kim Sunwoo Hwang +1 位作者 Jaemin Park Joouk Kim 《Computers, Materials & Continua》 SCIE EI 2023年第5期3027-3044,共18页
With the growth of the online market,demand for logistics and courier cargo is increasing rapidly.Accordingly,in the case of urban areas,road congestion and environmental problems due to cargo vehicles are mainly occu... With the growth of the online market,demand for logistics and courier cargo is increasing rapidly.Accordingly,in the case of urban areas,road congestion and environmental problems due to cargo vehicles are mainly occurring.The joint courier logistics system,a plan to solve this problem,aims to establish an efficient logistics transportation system by utilizing one joint logistics delivery terminal by several logistics and delivery companies.However,several courier companies use different types of courier invoices.Such a system has a problem of information data transmission interruption.Therefore,the data processing process was systematically analyzed,a practically feasible methodology was devised,and delivery invoice information processing standards were established for this.In addition,the importance of this paper can be emphasized in terms of data processing in the logistics sector,which is expected to grow rapidly in the future.The results of this study can be used as basic data for the implementation of the logistics joint delivery terminal system in the future.And it can be used as a basis for securing the operational reliability of the joint courier logistics system. 展开更多
关键词 Joint courier logistics base infrastructure logistics cooperation urban public infrastructure YOLOv4 object detection algorithm
下载PDF
Aerial multi-spectral AI-based detection system for unexploded ordnance
10
作者 Seungwan Cho Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期24-37,共14页
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent... Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery. 展开更多
关键词 Unexploded ordnance(UXO) Multispectral imaging Small unmanned aerial systems(sUAS) Object detection Deep learning convolutional neural network(DLCNN)
下载PDF
Real-Time CNN-Based Driver Distraction&Drowsiness Detection System
11
作者 Abdulwahab Ali Almazroi Mohammed A.Alqarni +1 位作者 Nida Aslam Rizwan Ali Shah 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2153-2174,共22页
Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sle... Nowadays days,the chief grounds of automobile accidents are driver fatigue and distractions.With the development of computer vision technology,a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them,reducing accidents.This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle.Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network(CNN)any changes by focusing on the eyes and mouth zone,precision is achieved.One of the tasks that must be performed in the transit system is seat belt detection to lessen accidents caused by sudden stops or high-speed collisions with other cars.A method is put forth to use convolution neural networks to determine whether the motorist is wearing a seat belt when a driver is sleepy,preoccupied,or not wearing their seat belt,this system alerts them with an alarm,and if they don’t wake up by a predetermined time of 3 s threshold,an automatic message is sent to law enforcement agencies.The suggested CNN-based model exhibits greater accuracy with 97%.It can be utilized to develop a system that detects driver attention or sleeps in real-time. 展开更多
关键词 Deep learning convolutional neural network Tensorflow drowsiness and yawn detection seat belt detection object detection
下载PDF
Up-Sampled Cross-Correlation Based Object Tracking & Vibration Measurement in Agriculture Tractor System
12
作者 R.Ganesan G.Sankaranarayanan +1 位作者 M.Pradeep Kumar V.K.Bupesh Raja 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期667-681,共15页
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ... This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis. 展开更多
关键词 Vibration measurement object tracking up-sampled cross-correlation finite difference algorithm template matching macro lens machine vision
下载PDF
Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm
13
作者 R.Anandha Murugan B.Sathyabama 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期353-368,共16页
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe... Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research. 展开更多
关键词 Object monitoring night vision image SSAN dataset adaptive internal linear embedding uplift linear discriminant analysis recurrent-phase level set segmentation correlation aware LSTM based yolo classifier algorithm
下载PDF
Design of Indoor Security Robot based on Robot Operating System
14
作者 Faxu He Liye Zhang 《Journal of Computer and Communications》 2023年第5期93-107,共15页
The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has... The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has certain theoretical research significance and practical application value. The project development is completed in ROS (Robot Operating System). The main tools or frameworks used include AMCL (Adaptive Monte Carlo Localization) package, SLAM (Simultaneous Localization and Mapping) algorithm, Darknet deep learning framework, YOLOv3 (You Only Look Once)algorithm, etc. The main development methods include odometer information fusion, coordinate transformation, localization and mapping, path planning, YOLOv3 model training, function package configuration and deployment. Indoor security robot has two main functions: first, it can complete real-time localization, mapping and navigation of indoor environment through sensors such as lidar and camera;Second, object detection is accomplished through USB camera. Through the detailed analysis and research of the functional design of the two modules, the expected function is finally realized, which can meet the daily use needs. 展开更多
关键词 Indoor Security Robot Indoor Navigation SLAM Object Detection YOLO
下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法
15
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
16
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence Deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7 被引量:1
17
作者 Liqiu Ren Zhanying Li +2 位作者 Xueyu He Lingyan Kong Yinghao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2829-2845,共17页
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic... For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection. 展开更多
关键词 Deep learning underwater object detection improved YOLOv7 attention mechanism
下载PDF
Method of Establishing Object-Oriented System Structure for Decision Support System 被引量:2
18
作者 曹元大 胡军 管春 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期311-315,共5页
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an... In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand. 展开更多
关键词 decision support system object oriented technology system structure
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
19
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 High-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
Algorithm and System of Scanning Color 3D Objects 被引量:1
20
作者 许智钦 孙长库 郑义忠 《Transactions of Tianjin University》 EI CAS 2002年第2期134-138,共5页
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ... This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification. 展开更多
关键词 D measurement color 3D object laser scanning surface construction
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部