Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom...Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability ...Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.展开更多
Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challen...Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.展开更多
Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.Howev...Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX.展开更多
Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the sa...Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the same person within one image,but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same.When tracking the same object using two or more images,there must be a way to determine that objects existing in different images are the same object.Therefore,this paper attempts to determine the same object present in different images using color information among the unique information of the object.Thus,this study proposes a multiple-object-tracking method using histogram stamp extraction in closed-circuit television applications.The proposed method determines the presence or absence of a target object in an image by comparing the similarity between the image containing the target object and other images.To this end,a unique color value of the target object is extracted based on its color distribution in the image using three methods:mean,mode,and interquartile range.The Top-N accuracy method is used to analyze the accuracy of each method,and the results show that the mean method had an accuracy of 93.5%(Top-2).Furthermore,the positive prediction value experimental results show that the accuracy of the mean method was 65.7%.As a result of the analysis,it is possible to detect and track the same object present in different images using the unique color of the object.Through the results,it is possible to track the same object that can minimize manpower without using personal information when detecting objects in different images.In the last response speed experiment,it was shown that when the mean was used,the color extraction of the object was possible in real time with 0.016954 s.Through this,it is possible to detect and track the same object in real time when using the proposed method.展开更多
Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human prior...Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human priorknowledge;thus, they can be sensitive to predefined hyperparameters and failto fit the spatial and scale variations of samples. In this study, we first developa novel dynamic label assignment (DLA) module to handle the diverse datadistributions and adaptively distinguish the foreground from the backgroundbased on the statistical characteristics of the target in visual object tracking.The core of DLA module is a two-step selection mechanism. The first stepselects candidate samples according to the Euclidean distance between trainingsamples and ground truth, and the second step selects positive/negativesamples based on the mean and standard deviation of candidate samples.The proposed approach is general-purpose and can be easily integrated intoanchor-based and anchor-free trackers for optimal sample-label matching.According to extensive experimental findings, Siamese-based trackers withDLA modules can refine target locations and outperformbaseline trackers onOTB100, VOT2019, UAV123 and LaSOT. Particularly, DLA-SiamRPN++improves SiamRPN++ by 1% AUC and DLA-SiamCAR improves Siam-CAR by 2.5% AUC on OTB100. Furthermore, hyper-parameters analysisexperiments show that DLA module hardly increases spatio-temporal complexity,the proposed approach maintains the same speed as the originaltracker without additional overhead.展开更多
Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has recei...Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has received significant attention from vehicle safety analysts.However,pedestrian protection in parking lots still faces many challenges.For example,the physical structure of a parking lot may be complex,and dead corners would occur when the vehicle density is high.These lead to pedestrians’sudden appearance in the vehicle’s path from an unexpected position,resulting in collision accidents in the parking lot.We advocate that besides vehicular sensing data,high-precision digital map of the parking lot,pedestrians’smart device’s sensing data,and attribute information of pedestrians can be used to detect the position of pedestrians in the parking lot.However,this subject has not been studied and explored in existing studies.Tofill this void,this paper proposes a pedestrian tracking framework integrating multiple information sources to provide pedestrian position and status information for vehicles and protect pedestrians in parking spaces.We also evaluate the proposed method through real-world experiments.The experimental results show that the proposed framework has its advantage in pedestrian attribute information extraction and positioning accuracy.It can also be used for pedestrian tracking in parking spaces.展开更多
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ...This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.展开更多
Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific...Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific proposals is proposed to optimize the mathematical model of the correlation filter(CF).Firstly,according to the consistency of the changes between the object frames and the filter frames,the mask matrix is introduced into the objective function of the filter,so as to extract the spatio-temporal information of the object with background awareness.Secondly,the object function of multi-feature fusion is constructed for the object location,which is optimized by the Lagrange method and solved by closed iteration.In the process of filter optimization,the constraints term of time-space perception is designed to enhance the learning ability of the CF to optimize the final track-ing results.Finally,when the tracking results fluctuate,the boundary suppres-sion factor is introduced into the instance-specific proposals to reduce the risk of model drift effectively.The accuracy and success rate of the proposed algorithm are verified by simulation analysis on two popular benchmarks,the object tracking benchmark 2015(OTB2015)and the temple color 128(TC-128).Extensive experimental results illustrate that the optimized appearance model of the proposed algorithm is effective.The distance precision rate and overlap success rate of the proposed algorithm are 0.756 and 0.656 on the OTB2015 benchmark,which are better than the results of other competing algorithms.The results of this study can solve the problem of real-time object tracking in the real traffic environment and provide a specific reference for the detection of traffic abnormalities.展开更多
The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,th...The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,there are still some difficulties with object tracking for example illumination and deformation(DEF).The precision and accuracy of tracking algorithms suffer from the effects of such occurrences.For this situation,finding a solution is important.This research proposes a new tracking algorithm to handle this problem.The features are extracted by using Modified LeNet-5,and the precision and accuracy are improved by developing the Real-Time Cross-modality Correlation Filtering method(RCCF).In Modified LeNet-5,the visual tracking performance is improved by adjusting the number and size of the convolution kernels in the pooling and convolution layers.The high-level,middle-level,and handcraft features are extracted from the modified LeNet-5 network.The handcraft features are used to determine the specific location of the target because the handcraft features contain more spatial information regarding the visual object.The LeNet features are more suitable for a target appearance change in object tracking.Extensive experiments were conducted by the Object Tracking Benchmarking(OTB)databases like OTB50 and OTB100.The experimental results reveal that the proposed tracker outperforms other state-of-the-art trackers under different problems.The experimental simulation is carried out in python.The overall success rate and precision of the proposed algorithm are 93.8%and 92.5%.The average running frame rate reaches 42 frames per second,which can meet the real-time requirements.展开更多
This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,th...This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.展开更多
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect...On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.展开更多
The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespa...The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multip...In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multiple independently-steerable zooming cameras to effectively monitor a set of targets of interest.Each camera is dedicated to tracking a specific target or cluster of targets.The key innovation of this study,in comparison to existing approaches,lies in incorporating the zooming factor for the onboard cameras into the optimization problem.This enhancement offers greater flexibility during mission execution by allowing the autonomous agent to adjust the focal lengths of the onboard cameras,in exchange for varying real-world distances to the corresponding targets,thereby providing additional degrees of freedom to the optimization problem.The proposed optimization framework aims to strike a balance among various factors,including distance to the targets,verticality of viewpoints,and the required focal length for each camera.The primary focus of this paper is to establish the theoretical groundwork for addressing the non-convex nature of the optimization problem arising from these considerations.To this end,we develop an original convex approximation strategy.The paper also includes simulations of diverse scenarios,featuring varying numbers of onboard tracking cameras and target motion profiles,to validate the effectiveness of the proposed approach.展开更多
In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake...In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.展开更多
There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most ...There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62177029the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0740),China.
文摘Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
文摘Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2023-RS-2022-00156326)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation).
文摘Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.
基金funded by the National Natural Science Foundation of China(Grant No.52072408),author Y.C.
文摘Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1068828).
文摘Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the same person within one image,but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same.When tracking the same object using two or more images,there must be a way to determine that objects existing in different images are the same object.Therefore,this paper attempts to determine the same object present in different images using color information among the unique information of the object.Thus,this study proposes a multiple-object-tracking method using histogram stamp extraction in closed-circuit television applications.The proposed method determines the presence or absence of a target object in an image by comparing the similarity between the image containing the target object and other images.To this end,a unique color value of the target object is extracted based on its color distribution in the image using three methods:mean,mode,and interquartile range.The Top-N accuracy method is used to analyze the accuracy of each method,and the results show that the mean method had an accuracy of 93.5%(Top-2).Furthermore,the positive prediction value experimental results show that the accuracy of the mean method was 65.7%.As a result of the analysis,it is possible to detect and track the same object present in different images using the unique color of the object.Through the results,it is possible to track the same object that can minimize manpower without using personal information when detecting objects in different images.In the last response speed experiment,it was shown that when the mean was used,the color extraction of the object was possible in real time with 0.016954 s.Through this,it is possible to detect and track the same object in real time when using the proposed method.
基金support of the National Natural Science Foundation of China (Grant No.52127809,author Z.W,http://www.nsfc.gov.cn/No.51625501,author Z.W,http://www.nsfc.gov.cn/)is greatly appreciated.
文摘Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human priorknowledge;thus, they can be sensitive to predefined hyperparameters and failto fit the spatial and scale variations of samples. In this study, we first developa novel dynamic label assignment (DLA) module to handle the diverse datadistributions and adaptively distinguish the foreground from the backgroundbased on the statistical characteristics of the target in visual object tracking.The core of DLA module is a two-step selection mechanism. The first stepselects candidate samples according to the Euclidean distance between trainingsamples and ground truth, and the second step selects positive/negativesamples based on the mean and standard deviation of candidate samples.The proposed approach is general-purpose and can be easily integrated intoanchor-based and anchor-free trackers for optimal sample-label matching.According to extensive experimental findings, Siamese-based trackers withDLA modules can refine target locations and outperformbaseline trackers onOTB100, VOT2019, UAV123 and LaSOT. Particularly, DLA-SiamRPN++improves SiamRPN++ by 1% AUC and DLA-SiamCAR improves Siam-CAR by 2.5% AUC on OTB100. Furthermore, hyper-parameters analysisexperiments show that DLA module hardly increases spatio-temporal complexity,the proposed approach maintains the same speed as the originaltracker without additional overhead.
基金Our research in this paper was partially supported by JST COI JPMJCE1317.
文摘Many traffic accidents occur in parking lots.One of the serious safety risks is vehicle-pedestrian conflict.Moreover,with the increasing development of automatic driving and parking technology,parking safety has received significant attention from vehicle safety analysts.However,pedestrian protection in parking lots still faces many challenges.For example,the physical structure of a parking lot may be complex,and dead corners would occur when the vehicle density is high.These lead to pedestrians’sudden appearance in the vehicle’s path from an unexpected position,resulting in collision accidents in the parking lot.We advocate that besides vehicular sensing data,high-precision digital map of the parking lot,pedestrians’smart device’s sensing data,and attribute information of pedestrians can be used to detect the position of pedestrians in the parking lot.However,this subject has not been studied and explored in existing studies.Tofill this void,this paper proposes a pedestrian tracking framework integrating multiple information sources to provide pedestrian position and status information for vehicles and protect pedestrians in parking spaces.We also evaluate the proposed method through real-world experiments.The experimental results show that the proposed framework has its advantage in pedestrian attribute information extraction and positioning accuracy.It can also be used for pedestrian tracking in parking spaces.
文摘This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.
基金funded by the Basic Science Major Foundation(Natural Science)of the Jiangsu Higher Education Institutions of China(Grant:22KJA520012)the Xuzhou Science and Technology Plan Project(Grant:KC21303,KC22305)the sixth“333 project”of Jiangsu Province.
文摘Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific proposals is proposed to optimize the mathematical model of the correlation filter(CF).Firstly,according to the consistency of the changes between the object frames and the filter frames,the mask matrix is introduced into the objective function of the filter,so as to extract the spatio-temporal information of the object with background awareness.Secondly,the object function of multi-feature fusion is constructed for the object location,which is optimized by the Lagrange method and solved by closed iteration.In the process of filter optimization,the constraints term of time-space perception is designed to enhance the learning ability of the CF to optimize the final track-ing results.Finally,when the tracking results fluctuate,the boundary suppres-sion factor is introduced into the instance-specific proposals to reduce the risk of model drift effectively.The accuracy and success rate of the proposed algorithm are verified by simulation analysis on two popular benchmarks,the object tracking benchmark 2015(OTB2015)and the temple color 128(TC-128).Extensive experimental results illustrate that the optimized appearance model of the proposed algorithm is effective.The distance precision rate and overlap success rate of the proposed algorithm are 0.756 and 0.656 on the OTB2015 benchmark,which are better than the results of other competing algorithms.The results of this study can solve the problem of real-time object tracking in the real traffic environment and provide a specific reference for the detection of traffic abnormalities.
文摘The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,there are still some difficulties with object tracking for example illumination and deformation(DEF).The precision and accuracy of tracking algorithms suffer from the effects of such occurrences.For this situation,finding a solution is important.This research proposes a new tracking algorithm to handle this problem.The features are extracted by using Modified LeNet-5,and the precision and accuracy are improved by developing the Real-Time Cross-modality Correlation Filtering method(RCCF).In Modified LeNet-5,the visual tracking performance is improved by adjusting the number and size of the convolution kernels in the pooling and convolution layers.The high-level,middle-level,and handcraft features are extracted from the modified LeNet-5 network.The handcraft features are used to determine the specific location of the target because the handcraft features contain more spatial information regarding the visual object.The LeNet features are more suitable for a target appearance change in object tracking.Extensive experiments were conducted by the Object Tracking Benchmarking(OTB)databases like OTB50 and OTB100.The experimental results reveal that the proposed tracker outperforms other state-of-the-art trackers under different problems.The experimental simulation is carried out in python.The overall success rate and precision of the proposed algorithm are 93.8%and 92.5%.The average running frame rate reaches 42 frames per second,which can meet the real-time requirements.
文摘This paper discusses about the new approach of multiple object track-ing relative to background information.The concept of multiple object tracking through background learning is based upon the theory of relativity,that involves a frame of reference in spatial domain to localize and/or track any object.Thefield of multiple object tracking has seen a lot of research,but researchers have considered the background as redundant.However,in object tracking,the back-ground plays a vital role and leads to definite improvement in the overall process of tracking.In the present work an algorithm is proposed for the multiple object tracking through background learning.The learning framework is based on graph embedding approach for localizing multiple objects.The graph utilizes the inher-ent capabilities of depth modelling that assist in prior to track occlusion avoidance among multiple objects.The proposed algorithm has been compared with the recent work available in literature on numerous performance evaluation measures.It is observed that our proposed algorithm gives better performance.
文摘On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.
文摘The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金supported by grants PID2022-142946NA-I00 and PID2022-141159OB-I00funded by MICIU/AEI/10.13039/501100011033ERDF/EU
文摘In the context of multiple-target tracking and surveillance applications,this paper investigates the challenge of determining the optimal positioning of a single autonomous aerial vehicle or agent equipped with multiple independently-steerable zooming cameras to effectively monitor a set of targets of interest.Each camera is dedicated to tracking a specific target or cluster of targets.The key innovation of this study,in comparison to existing approaches,lies in incorporating the zooming factor for the onboard cameras into the optimization problem.This enhancement offers greater flexibility during mission execution by allowing the autonomous agent to adjust the focal lengths of the onboard cameras,in exchange for varying real-world distances to the corresponding targets,thereby providing additional degrees of freedom to the optimization problem.The proposed optimization framework aims to strike a balance among various factors,including distance to the targets,verticality of viewpoints,and the required focal length for each camera.The primary focus of this paper is to establish the theoretical groundwork for addressing the non-convex nature of the optimization problem arising from these considerations.To this end,we develop an original convex approximation strategy.The paper also includes simulations of diverse scenarios,featuring varying numbers of onboard tracking cameras and target motion profiles,to validate the effectiveness of the proposed approach.
基金National Natural Science Foundation of China(No.61201412)
文摘In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.
基金supported in part by the Institute for Guo Qiang of Tsinghua University(2019GQG1023)in part by Graduate Education and Teaching Reform Project of Tsinghua University(202007J007)+1 种基金in part by National Natural Science Foundation of China(U19B2029,62073028,61803222)in part by the Independent Research Program of Tsinghua University(2018Z05JDX002)。
文摘There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.