A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of ...A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.展开更多
In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly conne...In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly connected and structured, which makes motion connectivity an advanced feature for segmentation. Accordingly, after sharp noise elimination, the cumulated difference image, which exhibits the coherent motion of the moving object, is adaptively thresholded. Then the maximal connected region is labeled, post-processed and output as the final segmenting mask. Hence the initial video object is effectively extracted. Comparative experimental results show that the proposed algorithm extracts the initial video object automatically, promptly and properly, thereby achieving satisfactory subjective and objective performance.展开更多
This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithm...This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.展开更多
This paper presents a novel approach for moving object extraction in the H.264/AVC compressed domain, which based on Ant Colony clustering Algorithm (ACA) and threshold method in macro block layer. Firstly, the Motion...This paper presents a novel approach for moving object extraction in the H.264/AVC compressed domain, which based on Ant Colony clustering Algorithm (ACA) and threshold method in macro block layer. Firstly, the Motion Vector (MV) field and the macro block types are extracted from the H.264/AVC compressed video, and then merge MVs with the same characteristic. Secondly, an improved ACA is used to classify the MV field into different motion homogenous regions. At the same time, use macro block types to determine the location of objects. Finally, using the complementarities of macro block template and MVs clustering template to obtain final objects. Experimental results for several video sequences demonstrate that in the case of ensuring accuracy, the proposed approach can extract moving object faster.展开更多
In this paper, we propose a novel automatic object extraction algorithm, named the Template Guided Live Wire, based on the popularly used live-wire techniques. We discuss in details the novel method’s applications on...In this paper, we propose a novel automatic object extraction algorithm, named the Template Guided Live Wire, based on the popularly used live-wire techniques. We discuss in details the novel method’s applications on tongue extraction in digital images. With the guides of a given template curve which approximates the tongue’s shape, our method can finish the extraction of tongue without any human intervention. In the paper, we also discussed in details how the template guides the live wire, and why our method functions more effectively than other boundary based segmentation methods especially the snake algorithm. Experimental results on some tongue images are as well provided to show our method’s better accuracy and robustness than the snake algorithm.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
A novel method is proposed to automatically extract foreground objects from Martian surface images.The characteristics of Mars images are distinct,e.g.uneven illumination,low contrast between foreground and background...A novel method is proposed to automatically extract foreground objects from Martian surface images.The characteristics of Mars images are distinct,e.g.uneven illumination,low contrast between foreground and background,much noise in the background,and foreground objects with irregular shapes.In the context of these characteristics,an image is divided into foreground objects and background information.Homomorphism filtering is first applied to rectify brightness.Then,wavelet transformation enhances contrast and denoises the image.Third,edge detection and active contour are combined to extract contours regardless of the shape of the image.Experimental results show that the method can extract foreground objects from Mars images automatically and accurately,and has many potential applications.展开更多
There exist a lot of legacy systems written in C language, which are difficult to understand, modify, maintain and reuse. How to improve the quality of these non object oriented systems has become an important issue ...There exist a lot of legacy systems written in C language, which are difficult to understand, modify, maintain and reuse. How to improve the quality of these non object oriented systems has become an important issue in software engineering area. A possible way is to transform these procedural systems into semantically equivalent object oriented systems implemented in C++ language, which provides object oriented features such as data abstraction, inheritance and polymorphism, makes software system more comprehensible, maintainable and reusable. A detailed discussion on polymorphism analysis, object discovery and possible inheritance relation extraction on C to C++ conversion problem is made, which is also suitable to the transformation on legacy systems implemented in other procedural languages to equivalent object oriented systems.展开更多
Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitt...Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitting the original frame image is obtained via feature detection algorithm. Then,higher order statistics motion analysis is applied on the 2-D mesh representation to get an initial motion detection mask.After post-processing,the final segmenting mask is quickly obtained.And hence the video object is effectively extracted.Experimental results show that the proposed algorithm combines the merits of mesh-based segmenting algorithms and pixel-based segmenting algorithms,and hereby achieves satisfactory subjective and objective performance while dramatically increasing the segmenting speed.展开更多
Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-G...Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.展开更多
A novel method to extract a bounding box that contains the three-dimensional object from its spherical hologram is proposed. The proposed method uses the windowed Fourier transform to obtain the angular distribution o...A novel method to extract a bounding box that contains the three-dimensional object from its spherical hologram is proposed. The proposed method uses the windowed Fourier transform to obtain the angular distribution of the quasi-collimated beams at each position in the spherical hologram and estimates the bounding box by accumulating the quasi-collimated beams in the volume inside the spherical hologram. The estimated bounding box is then used to realize occlusion effect between the objects in the synthesis of the three-dimensional scene hologram.展开更多
The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos...The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos and relevant selling information) with the video content so as to enrich the viewing experience.Toward this end,this paper presents a novel approach for user-targeted video content association(VCA) .In this approach,the salient objects are extracted automatically from the video stream using complementary saliency maps.According to these salient objects,the VCA system can push the related logo images to the users.Since the salient objects often correspond to important video content,the associated images can be considered as content-related.Our VCA system also allows users to associate images to the preferred video content through simple interactions by the mouse and an infrared pen.Moreover,by learning the preference of each user through collecting feedbacks on the pulled or pushed images,the VCA system can provide user-targeted services.Experimental results show that our approach can effectively and efficiently extract the salient objects.Moreover,subjective evaluations show that our system can provide content-related and user-targeted VCA services in a less intrusive way.展开更多
We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths...We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To展开更多
基金The National Natural Science Foundation of China(No.60574006)
文摘A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.
基金The National Natural Science Foundation of China(No60672094)
文摘In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly connected and structured, which makes motion connectivity an advanced feature for segmentation. Accordingly, after sharp noise elimination, the cumulated difference image, which exhibits the coherent motion of the moving object, is adaptively thresholded. Then the maximal connected region is labeled, post-processed and output as the final segmenting mask. Hence the initial video object is effectively extracted. Comparative experimental results show that the proposed algorithm extracts the initial video object automatically, promptly and properly, thereby achieving satisfactory subjective and objective performance.
文摘This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.
基金Supported by the Shanghai Normal University Funded Project(No.SK 201127)
文摘This paper presents a novel approach for moving object extraction in the H.264/AVC compressed domain, which based on Ant Colony clustering Algorithm (ACA) and threshold method in macro block layer. Firstly, the Motion Vector (MV) field and the macro block types are extracted from the H.264/AVC compressed video, and then merge MVs with the same characteristic. Secondly, an improved ACA is used to classify the MV field into different motion homogenous regions. At the same time, use macro block types to determine the location of objects. Finally, using the complementarities of macro block template and MVs clustering template to obtain final objects. Experimental results for several video sequences demonstrate that in the case of ensuring accuracy, the proposed approach can extract moving object faster.
文摘In this paper, we propose a novel automatic object extraction algorithm, named the Template Guided Live Wire, based on the popularly used live-wire techniques. We discuss in details the novel method’s applications on tongue extraction in digital images. With the guides of a given template curve which approximates the tongue’s shape, our method can finish the extraction of tongue without any human intervention. In the paper, we also discussed in details how the template guides the live wire, and why our method functions more effectively than other boundary based segmentation methods especially the snake algorithm. Experimental results on some tongue images are as well provided to show our method’s better accuracy and robustness than the snake algorithm.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
基金Supported by the National 973 Program of China(No.2007CB310804)the National Natural Science Foundation of China(No.61173061).
文摘A novel method is proposed to automatically extract foreground objects from Martian surface images.The characteristics of Mars images are distinct,e.g.uneven illumination,low contrast between foreground and background,much noise in the background,and foreground objects with irregular shapes.In the context of these characteristics,an image is divided into foreground objects and background information.Homomorphism filtering is first applied to rectify brightness.Then,wavelet transformation enhances contrast and denoises the image.Third,edge detection and active contour are combined to extract contours regardless of the shape of the image.Experimental results show that the method can extract foreground objects from Mars images automatically and accurately,and has many potential applications.
基金Supported in part by the National Natural Science F oundation of China(6 0 0 730 12 )
文摘There exist a lot of legacy systems written in C language, which are difficult to understand, modify, maintain and reuse. How to improve the quality of these non object oriented systems has become an important issue in software engineering area. A possible way is to transform these procedural systems into semantically equivalent object oriented systems implemented in C++ language, which provides object oriented features such as data abstraction, inheritance and polymorphism, makes software system more comprehensible, maintainable and reusable. A detailed discussion on polymorphism analysis, object discovery and possible inheritance relation extraction on C to C++ conversion problem is made, which is also suitable to the transformation on legacy systems implemented in other procedural languages to equivalent object oriented systems.
基金Supported by the National Natural Science Foundation of China (No.60672094).
文摘Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitting the original frame image is obtained via feature detection algorithm. Then,higher order statistics motion analysis is applied on the 2-D mesh representation to get an initial motion detection mask.After post-processing,the final segmenting mask is quickly obtained.And hence the video object is effectively extracted.Experimental results show that the proposed algorithm combines the merits of mesh-based segmenting algorithms and pixel-based segmenting algorithms,and hereby achieves satisfactory subjective and objective performance while dramatically increasing the segmenting speed.
文摘Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.
基金partly supported by‘The Cross-Ministry Giga KOREA Project’of The Ministry of Science,IC Tand Future Planning,Korea.[No.GK13D0100,Development of Telecommunications Terminal with Digital Holographic Table-top Display]partly supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(No.2013061913)
文摘A novel method to extract a bounding box that contains the three-dimensional object from its spherical hologram is proposed. The proposed method uses the windowed Fourier transform to obtain the angular distribution of the quasi-collimated beams at each position in the spherical hologram and estimates the bounding box by accumulating the quasi-collimated beams in the volume inside the spherical hologram. The estimated bounding box is then used to realize occlusion effect between the objects in the synthesis of the three-dimensional scene hologram.
基金Project supported by the CADAL Project and the National Natural Science Foundation of China(Nos.60973055 and 90820003)
文摘The increasing amount of videos on the Internet and digital libraries highlights the necessity and importance of interactive video services such as automatically associating additional materials(e.g.,advertising logos and relevant selling information) with the video content so as to enrich the viewing experience.Toward this end,this paper presents a novel approach for user-targeted video content association(VCA) .In this approach,the salient objects are extracted automatically from the video stream using complementary saliency maps.According to these salient objects,the VCA system can push the related logo images to the users.Since the salient objects often correspond to important video content,the associated images can be considered as content-related.Our VCA system also allows users to associate images to the preferred video content through simple interactions by the mouse and an infrared pen.Moreover,by learning the preference of each user through collecting feedbacks on the pulled or pushed images,the VCA system can provide user-targeted services.Experimental results show that our approach can effectively and efficiently extract the salient objects.Moreover,subjective evaluations show that our system can provide content-related and user-targeted VCA services in a less intrusive way.
基金supported by Key Project No. 61332015 of the National Natural Science Foundation of ChinaProject Nos.ZR2013FM302 and ZR2017MF057 of the Natural Science Found of Shandong
文摘We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To