A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated usi...A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated using the conventional spatial spectrum estimation method, then the noise and uncorrelated sources in Toeplitz structure are eliminated using differencing, finally by exploiting the property of oblique projection, the contributions of correlated sources are then eliminated from the covariance matrix and only the coherent sources remain. So the coherent sources can be estimated by the technique of modified spatial smoothing. The number of sources resolved by this approach can exceed the number of array elements without repeatedly estimating correlated sources. Simulation results demonstrate the effectiveness and efficiency of our proposed method.展开更多
基金supported by the National Natural Science Foundation of China(60601016).
文摘A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated using the conventional spatial spectrum estimation method, then the noise and uncorrelated sources in Toeplitz structure are eliminated using differencing, finally by exploiting the property of oblique projection, the contributions of correlated sources are then eliminated from the covariance matrix and only the coherent sources remain. So the coherent sources can be estimated by the technique of modified spatial smoothing. The number of sources resolved by this approach can exceed the number of array elements without repeatedly estimating correlated sources. Simulation results demonstrate the effectiveness and efficiency of our proposed method.