A geometric framework is proposed for multinomial nonlinear modelsbased on a modified version of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic infe...A geometric framework is proposed for multinomial nonlinear modelsbased on a modified version of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvatures for multinomial nonlinear models. Our previous results [15] for ordinarynonlinear regression models are extended to multinomial nonlinear models.展开更多
Panel count data occur in many clinical and observational studies and in some situations the observation process is informative. In this article, we propose a new joint model for the analysis of panel count data with ...Panel count data occur in many clinical and observational studies and in some situations the observation process is informative. In this article, we propose a new joint model for the analysis of panel count data with time-dependent covariates and possibly in the presence of informative observation process via two latent variables. For the inference on the proposed model, a class of estimating equations is developed and the resulting estimators are shown to be consistent and asymptotically normal. In addition, a lack-of-fit test is provided for assessing the adequacy of the model. The finite-sample behavior of the proposed methods is examined through Monte Carlo simulation studies which suggest that the proposed approach works well for practical situations. Also an illustrative example is provided.展开更多
This paper contributes an inclusive review of scientific studies in the field of sustainable human building ecosystems (SHBEs). Reducing energy consumption by making buildings more energy efficient has been touted a...This paper contributes an inclusive review of scientific studies in the field of sustainable human building ecosystems (SHBEs). Reducing energy consumption by making buildings more energy efficient has been touted as an easily attainable approach to promoting carbon-neutral energy societies. Yet, despite significant progress in research and technology development, for new buildings, as energy codes are getting more stringent, more and more technologies, e.g., LED lighting, VRF systems, smart plugs, occupancy-based controls, are used. Nevertheless, the adoption of energy efficient measures in buildings is still limited in the larger context of the developing countries and middle income/low-income population. The objective of Sustainable Human Building Ecosystem Research Coordination Network (SHBE-RCN) is to expand synergistic investigative podium in order to subdue barriers in engineering, architectural design, social and economic perspectives that hinder wider application, adoption and subsequent performance of sustainable building solutions by recognizing the essential role of human behaviors within building-scale ecosystems. Expected long-term outcomes of SHBE-RCN are collaborative ideas for transformative technologies, designs and methods of adoption for future design, construction and operation of sustainable buildings.展开更多
Longitudinal data often arise when subjects are followed over a period of time, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-...Longitudinal data often arise when subjects are followed over a period of time, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times and a dependent terminal event in which a common subject-specific latent variable is used to characterize the correlations. A borrow-strength estimation procedure is developed for parameter estimation, and both large-sample and finite^sample properties of the proposed estimators are established. In addition, some goodness-of-fit methods for assessing the adequacy of the model are provided. An application to a bladder cancer study is illustrated.展开更多
In many longitudinal studies, observation times as well as censoring times may be correlated with longitudinal responses. This paper considers a multiplicative random effects model for the longitudinal response where ...In many longitudinal studies, observation times as well as censoring times may be correlated with longitudinal responses. This paper considers a multiplicative random effects model for the longitudinal response where these correlations may exist and a joint modeling approach is proposed via a shared latent variable. For inference about regression parameters, estimating equation approaches are developed and asymptotic properties of the proposed estimators are established. The finite sample behavior of the methods is examined through simulation studies and an application to a data set from a bladder cancer study is provided for illustration.展开更多
Longitudinal data often occur in follow-up studies, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. We propose a semiparamet...Longitudinal data often occur in follow-up studies, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. We propose a semiparametric mixed effect model with time-varying latent effects in the analysis of longitudinal data with informative observation times and a dependent terminal event. Estimating equation approaches are developed for parameter estimation, and asymptotic properties of the resulting estimators are established. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is provided.展开更多
文摘A geometric framework is proposed for multinomial nonlinear modelsbased on a modified version of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvatures for multinomial nonlinear models. Our previous results [15] for ordinarynonlinear regression models are extended to multinomial nonlinear models.
基金partially supported by National Natural Science Foundation of China(11671267)Scientific Research Level Improvement Quota Project of Capital University of Economics and Business and Scientific Research Foundation for Young Teachers of Capital University of Economics and Business(00591654490336)+6 种基金partially supported by the National Natural Science Foundation of China(Nos.11301212,11401146)partially supported by the National Natural Science Foundation of China Grants(No.11231010,11171330 and 11021161)Key Laboratory of RCSDS,CAS(No.2008DP173182)partly supported by National Natural Science Foundation of China(11271155)Specialized Research Fund for the Doctoral Program of Higher Education(20110061110003)Scientific Research Fund of Jilin University(201100011)Jilin Province Natural Science Foundation(20101596)
文摘Panel count data occur in many clinical and observational studies and in some situations the observation process is informative. In this article, we propose a new joint model for the analysis of panel count data with time-dependent covariates and possibly in the presence of informative observation process via two latent variables. For the inference on the proposed model, a class of estimating equations is developed and the resulting estimators are shown to be consistent and asymptotically normal. In addition, a lack-of-fit test is provided for assessing the adequacy of the model. The finite-sample behavior of the proposed methods is examined through Monte Carlo simulation studies which suggest that the proposed approach works well for practical situations. Also an illustrative example is provided.
基金The support through a grant from US National Science Foundation (Award# 1338851) is greatly appreciated. The SHBERCN activities enjoy the broad supports from IEA Annex 66 group, US DOE's Building Technology Office, and Lawrence Berkeley National Laboratories.
文摘This paper contributes an inclusive review of scientific studies in the field of sustainable human building ecosystems (SHBEs). Reducing energy consumption by making buildings more energy efficient has been touted as an easily attainable approach to promoting carbon-neutral energy societies. Yet, despite significant progress in research and technology development, for new buildings, as energy codes are getting more stringent, more and more technologies, e.g., LED lighting, VRF systems, smart plugs, occupancy-based controls, are used. Nevertheless, the adoption of energy efficient measures in buildings is still limited in the larger context of the developing countries and middle income/low-income population. The objective of Sustainable Human Building Ecosystem Research Coordination Network (SHBE-RCN) is to expand synergistic investigative podium in order to subdue barriers in engineering, architectural design, social and economic perspectives that hinder wider application, adoption and subsequent performance of sustainable building solutions by recognizing the essential role of human behaviors within building-scale ecosystems. Expected long-term outcomes of SHBE-RCN are collaborative ideas for transformative technologies, designs and methods of adoption for future design, construction and operation of sustainable buildings.
基金Supported by the National Natural Science Foundation of China Grants(No.11231010 and 11171330)Key Laboratory of RCSDS,CAS(No.2008DP173182)
文摘Longitudinal data often arise when subjects are followed over a period of time, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times and a dependent terminal event in which a common subject-specific latent variable is used to characterize the correlations. A borrow-strength estimation procedure is developed for parameter estimation, and both large-sample and finite^sample properties of the proposed estimators are established. In addition, some goodness-of-fit methods for assessing the adequacy of the model are provided. An application to a bladder cancer study is illustrated.
基金supported by the National Natural Science Foundation of China Grants(No.10571169 and 10731010)the National Basic Research Program of China (973 Program) (No.2007CB814902)
文摘In many longitudinal studies, observation times as well as censoring times may be correlated with longitudinal responses. This paper considers a multiplicative random effects model for the longitudinal response where these correlations may exist and a joint modeling approach is proposed via a shared latent variable. For inference about regression parameters, estimating equation approaches are developed and asymptotic properties of the proposed estimators are established. The finite sample behavior of the methods is examined through simulation studies and an application to a data set from a bladder cancer study is provided for illustration.
基金supported by National Natural Science Foundation of China (Grant Nos. 11231010, 11171330 and 11201315)Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182)Beijing Center for Mathematics and Information Interdisciplinary Sciences
文摘Longitudinal data often occur in follow-up studies, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. We propose a semiparametric mixed effect model with time-varying latent effects in the analysis of longitudinal data with informative observation times and a dependent terminal event. Estimating equation approaches are developed for parameter estimation, and asymptotic properties of the resulting estimators are established. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is provided.