We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-...We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.展开更多
The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring...The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.展开更多
With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic object...With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.展开更多
Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmologic...Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.展开更多
We present a large sample of candidate galaxies at z ≈ 7 - 10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. ...We present a large sample of candidate galaxies at z ≈ 7 - 10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z850-dropouts (four new discoveries), 15 Y105-dropouts (nine new discoveries) and 20 J125-dropouts (all new discoveries). The surface densities of the Z850-dropouts are close to what was predicted by earlier studies, however, those of the Y105- and J125-dropouts are quite unexpected. While no Y105- or J125-dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ~ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ≈8 and 10. As compared to their counterpart at z ≈ 7, here L^* decreases by a factor of ~ 6.5 and Ф^* increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ≈ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ≈ 10, rapidly reach the minimum at z≈ 7, and start to rise again towards z ≈ 6. In this scenario, the majority of the stellar mass that the universe assembled through the reionization epoch seems still undetected by current observations at z ≈ 6.展开更多
Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae....Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical anal- ysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.展开更多
A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric a...A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric and asymmetric image theory to this thick 3D shell produces a ring in the 2D map of intensity and a characteristic “U” shape in the case of 1D cut of the intensity. A comparison of such a ring originating from a superbubble is made with the Einstein’s ring. A Taylor approximation of order 10 for the angular diameter distance is derived in order to deal with high values of the redshift.展开更多
A global relationship between cosmological time and Belinskii-Khalatnikov -Lifshitz (BKL) time during the entire evolution of the Mixmaster Bianchi IX universe is used to explain why all the Lyapunov exponents are z...A global relationship between cosmological time and Belinskii-Khalatnikov -Lifshitz (BKL) time during the entire evolution of the Mixmaster Bianchi IX universe is used to explain why all the Lyapunov exponents are zero at the BKL time. The actual reason is that the domain of the cosmological time is finite as the BKL time runs from minus infinity to infinity.展开更多
We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible...We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters H<sub>0</sub> and Ω<sub>M</sub> . A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the mini-max approximation.展开更多
The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 so...The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.展开更多
We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long ga...We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long gamma-ray bursts(GRBs) and its combination with recent Type Ia supernovae data(Union2). Our statistical analysis shows a weak but consistent direction dependence in both the data sets.The analysis also indicates a non-Gaussian nature of errors in both data sets.展开更多
In this paper, we propose a new parametrization for Om(z) diagnostics and show how the most recent and significantly improved observations concerning the H(z) and SN Ia measurements can be used to probe the consistenc...In this paper, we propose a new parametrization for Om(z) diagnostics and show how the most recent and significantly improved observations concerning the H(z) and SN Ia measurements can be used to probe the consistency or tension between the ΛCDM model and observations. Our results demonstrate that H0 plays a very important role in the consistency test of ΛCDM with H(z)data. Adopting the Hubble constant priors from Planck 2013 and Riess, one finds considerable tension between the current H(z) data and ΛCDM model and confirms the conclusions obtained previously by others. However, with the Hubble constant prior taken from WMAP9, the discrepancy between H(z) data and ΛCDM disappears, i.e., the current H(z) observations still support the cosmological constant scenario. This conclusion is also supported by the results derived from the Joint Lightcurve Analysis(JLA) SN Ia sample. The best-fit Hubble constant from the combination of H(z)+JLA(H00 = 68.81+1.5-1.49 km s-1 Mpc-1) is very consistent with results derived both by Planck 2013 and WMAP9, but is significantly different from the recent local measurement by Riess.展开更多
Although the spatial curvature has been measured with very high precision,it still suffers from the well-known cosmic curvature tension.In this paper,we use an improved method to determine the cosmic curvature,by usin...Although the spatial curvature has been measured with very high precision,it still suffers from the well-known cosmic curvature tension.In this paper,we use an improved method to determine the cosmic curvature,by using the simulated data of binary neutron star mergers observed by the second generation space-based DECi-hertz Interferometer Gravitational-wave Observatory(DECIGO).By applying the Hubble parameter observations of cosmic chronometers to the DECIGO standard sirens,we explore different possibilities of making measurements of the cosmic curvature referring to a distant past:one is to reconstruct the Hubble parameters through the Gaussian process without the influence of hypothetical models,and the other is deriving constraints onΩKin the framework of the non-flatΛcold dark matter model.It is shown that in the improved method DECIGO could provide a reliable and stringent constraint on the cosmic curvature(ΩK=-0.007±0.016),while we could only expect the zero cosmic curvature to be established at the precision ofΔΩK=0.11 in the second model-dependent method.Therefore,our results indicate that in the framework of methodology proposed in this paper,the increasing number of well-measured standard sirens in DECIGO could significantly reduce the bias of estimations for cosmic curvature.Such a constraint is also comparable to the precision of Planck 2018 results with the newest cosmic microwave background(CMB)observations(ΔΩK≈0.018),based on the concordanceΛCDM model.展开更多
This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A...This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A CCD camera with size 2k ×2k acquires images of the Sun and has a pixel size of 1.21″ pixel^-1 and a full field-of-view of 41'. The telescope is equipped with a guiding system which keeps the image of the Sun within a few pixels throughout the observations. The FWHM of the Lyot filter is 0.4A and the filter is motorized, capable of scanning the Hα line profile at a smaller step size of 0.01 A. Partial-disk imaging covering about 10' is also possible with the help of a relay lens kept in front of the CCD camera. In this paper, we report the detailed specifications of the telescope, filter unit, the installation, observations and the procedures we have followed to calibrate and align the data. We also present preliminary results with this new full-disk telescope.展开更多
We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous...We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration param- eters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G.展开更多
We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the four-dimensional Hubble parameter varies as H = εФ^s, ε ∈ R and s is some unknown power index and that the extra-dimensions compactify as the v...We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the four-dimensional Hubble parameter varies as H = εФ^s, ε ∈ R and s is some unknown power index and that the extra-dimensions compactify as the visible dimensions expand as b(t) ≈ a^x (t), x ∈R^-. We mainly discuss the case x = - 1. For critical values of e close to unity, it was observed that the acceleration of the universe occurs at red- shift close to z = 0.8 which indicates that in our model, accelerated expansion of the universe began only recently. Several interesting points are revealed and discussed in some detail.展开更多
A model of a cloud formed by massive strings is used as a source of Bianchi type II cases. We assume that the expansion (θ) in the model is proportional to the shear (σ). To get an exact solution, we consider th...A model of a cloud formed by massive strings is used as a source of Bianchi type II cases. We assume that the expansion (θ) in the model is proportional to the shear (σ). To get an exact solution, we consider the equation of state of the fluid to be in the stiff form. It is found that the bulk viscosity played a very important role in the history of the universe. In the presence of bulk viscosity the particles dominate over strings whereas in the absence of it, strings dominate over the particles, which is not consistent with recent observations. Also we observe that the viscosity causes the expansion of the universe to be accelerating. Our models are evolving from an early decelerating phase to a late time accelerating phase. The physical and geometrical behaviors of these models are discussed.展开更多
Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism are the focus of intense interest. They appear connected to su- pernova remnants from massive stars or the merger of their ...Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism are the focus of intense interest. They appear connected to su- pernova remnants from massive stars or the merger of their remnants, and their bright- ness makes them temporarily detectable out to the largest distances yet explored in the universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, and cosmology. as well as their connections to supernovae展开更多
Is it possible that the current cosmic accelerating expansion will turn into a decelerating one? Can this transition be realized by some viable theoretical model that is consistent with the standard Big Bang cosmolog...Is it possible that the current cosmic accelerating expansion will turn into a decelerating one? Can this transition be realized by some viable theoretical model that is consistent with the standard Big Bang cosmology? We study a class of phenomeno- logical models with a transient acceleration, based on a dynamical dark energy with a very general form of equation of state Pde = αPde -- βpdem. It mimics the cosmolog- ical constant αde → const for a small scale factor a, and behaves as a barotropic gas with pde → α-3(α+1) with α 〉 0 for large a. The cosmic evolution of four models in the class has been examined in detail, and all yield a smooth transient acceleration. Depending on the specific model, the future universe may be dominated by either dark energy or by matter. In two models, the dynamical dark energy can be explicitly real- ized by a scalar field with an analytical potential V(O). Moreover, a statistical analysis shows that the models can be as robust as ACDM in confronting the observational data of Type Ia supernovae, cosmic microwave background (CMB) and baryon acoustic os- cillation. As improvements over previous studies, our models overcome the problem of over-abundance of dark energy during early eras, and satisfy the constraints on dark energy from WMAP observations of CMB.展开更多
By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct ...By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.展开更多
基金supported by the National Key R&D Program of China(2023YFA1607800 and 2023YFA1607803)National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and 11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.
文摘The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.
文摘With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11235003,11175019 and 11178007)
文摘Redshift drift is a tool to directly probe the expansion history of the uni- verse. Based on the Friedmann-Robertson-Walker framework, we reconstruct the ve- locity drift and deceleration factor for several cosmological models using observa- tional H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy mod- els at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali- Gabadadze-Porrati model is inconsistent with the data at high redshift, which origi- nally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.
基金supported in part by the NASA JWST Interdisciplinary Scientist grant NAG5-12460 from GSFC
文摘We present a large sample of candidate galaxies at z ≈ 7 - 10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z850-dropouts (four new discoveries), 15 Y105-dropouts (nine new discoveries) and 20 J125-dropouts (all new discoveries). The surface densities of the Z850-dropouts are close to what was predicted by earlier studies, however, those of the Y105- and J125-dropouts are quite unexpected. While no Y105- or J125-dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ~ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ≈8 and 10. As compared to their counterpart at z ≈ 7, here L^* decreases by a factor of ~ 6.5 and Ф^* increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ≈ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ≈ 10, rapidly reach the minimum at z≈ 7, and start to rise again towards z ≈ 6. In this scenario, the majority of the stellar mass that the universe assembled through the reionization epoch seems still undetected by current observations at z ≈ 6.
文摘Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical anal- ysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.
文摘A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric and asymmetric image theory to this thick 3D shell produces a ring in the 2D map of intensity and a characteristic “U” shape in the case of 1D cut of the intensity. A comparison of such a ring originating from a superbubble is made with the Einstein’s ring. A Taylor approximation of order 10 for the angular diameter distance is derived in order to deal with high values of the redshift.
基金supported by the National Natural Science Foundation of China(Grant No.10873007)supported by the Science Foundation of Jiangxi Education Bureau(GJJ09072)the Program for Innovative Research Team of Nanchang University
文摘A global relationship between cosmological time and Belinskii-Khalatnikov -Lifshitz (BKL) time during the entire evolution of the Mixmaster Bianchi IX universe is used to explain why all the Lyapunov exponents are zero at the BKL time. The actual reason is that the domain of the cosmological time is finite as the BKL time runs from minus infinity to infinity.
文摘We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters H<sub>0</sub> and Ω<sub>M</sub> . A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the mini-max approximation.
基金supported by the National Natural Science Foundation of China(Grant Nos.10973022 and 10873039)
文摘The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.
文摘We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long gamma-ray bursts(GRBs) and its combination with recent Type Ia supernovae data(Union2). Our statistical analysis shows a weak but consistent direction dependence in both the data sets.The analysis also indicates a non-Gaussian nature of errors in both data sets.
基金supported by the National Key R&D Program of China (No. 2017YFA0402600)the National Basic Research Program of China (2014CB845800)+8 种基金the National Natural Science Foundation of China (Nos. 11503001, 11690023, 11373014 and 11633001)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB23000000)the Interdisciplinary Research Funds of Beijing Normal Universitythe Opening Project of Key Laboratory of Computational AstrophysicsNational Astronomical Observatories, Chinese Academy of Sciencessupported by the China Postdoctoral Science Foundation (Grant No. 2017M620661)also partly supported by the Poland-China Scientific & Technological Cooperation Committee Project (No. 35-4)supported by the Foreign Talent Introduction Projectthe Special Fund Supporting Introduction of Foreign Knowledge Project in China
文摘In this paper, we propose a new parametrization for Om(z) diagnostics and show how the most recent and significantly improved observations concerning the H(z) and SN Ia measurements can be used to probe the consistency or tension between the ΛCDM model and observations. Our results demonstrate that H0 plays a very important role in the consistency test of ΛCDM with H(z)data. Adopting the Hubble constant priors from Planck 2013 and Riess, one finds considerable tension between the current H(z) data and ΛCDM model and confirms the conclusions obtained previously by others. However, with the Hubble constant prior taken from WMAP9, the discrepancy between H(z) data and ΛCDM disappears, i.e., the current H(z) observations still support the cosmological constant scenario. This conclusion is also supported by the results derived from the Joint Lightcurve Analysis(JLA) SN Ia sample. The best-fit Hubble constant from the combination of H(z)+JLA(H00 = 68.81+1.5-1.49 km s-1 Mpc-1) is very consistent with results derived both by Planck 2013 and WMAP9, but is significantly different from the recent local measurement by Riess.
基金the National Natural Science Foundation of China(Grant Nos.12105032,11873001,12047564,12075041 and 12147102)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2021CDJQY-011 and 2020CDJQY-Z003)+3 种基金the Science Foundation of Chongqing(Grant No.D63012022005)Chongqing Science and Technology research project(Grant No.KJ111206)the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxm X0481)the Scientific Research and Innovation Project of Graduate Students in Chongqing(Grant No.CYS20272)。
文摘Although the spatial curvature has been measured with very high precision,it still suffers from the well-known cosmic curvature tension.In this paper,we use an improved method to determine the cosmic curvature,by using the simulated data of binary neutron star mergers observed by the second generation space-based DECi-hertz Interferometer Gravitational-wave Observatory(DECIGO).By applying the Hubble parameter observations of cosmic chronometers to the DECIGO standard sirens,we explore different possibilities of making measurements of the cosmic curvature referring to a distant past:one is to reconstruct the Hubble parameters through the Gaussian process without the influence of hypothetical models,and the other is deriving constraints onΩKin the framework of the non-flatΛcold dark matter model.It is shown that in the improved method DECIGO could provide a reliable and stringent constraint on the cosmic curvature(ΩK=-0.007±0.016),while we could only expect the zero cosmic curvature to be established at the precision ofΔΩK=0.11 in the second model-dependent method.Therefore,our results indicate that in the framework of methodology proposed in this paper,the increasing number of well-measured standard sirens in DECIGO could significantly reduce the bias of estimations for cosmic curvature.Such a constraint is also comparable to the precision of Planck 2018 results with the newest cosmic microwave background(CMB)observations(ΔΩK≈0.018),based on the concordanceΛCDM model.
文摘This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A CCD camera with size 2k ×2k acquires images of the Sun and has a pixel size of 1.21″ pixel^-1 and a full field-of-view of 41'. The telescope is equipped with a guiding system which keeps the image of the Sun within a few pixels throughout the observations. The FWHM of the Lyot filter is 0.4A and the filter is motorized, capable of scanning the Hα line profile at a smaller step size of 0.01 A. Partial-disk imaging covering about 10' is also possible with the help of a relay lens kept in front of the CCD camera. In this paper, we report the detailed specifications of the telescope, filter unit, the installation, observations and the procedures we have followed to calibrate and align the data. We also present preliminary results with this new full-disk telescope.
基金supported by the Department of Physics,Sanandaj Branch,Islamic Azad University,Sanandaj,Iran
文摘We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration param- eters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G.
文摘We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the four-dimensional Hubble parameter varies as H = εФ^s, ε ∈ R and s is some unknown power index and that the extra-dimensions compactify as the visible dimensions expand as b(t) ≈ a^x (t), x ∈R^-. We mainly discuss the case x = - 1. For critical values of e close to unity, it was observed that the acceleration of the universe occurs at red- shift close to z = 0.8 which indicates that in our model, accelerated expansion of the universe began only recently. Several interesting points are revealed and discussed in some detail.
基金supported by a research fund from the Mahshahr Branch of Islamic Azad University under the project entitled "Study of the homogenous and anisotropic cosmological models by considering the gravitational effects of viscosity and cosmic strings"
文摘A model of a cloud formed by massive strings is used as a source of Bianchi type II cases. We assume that the expansion (θ) in the model is proportional to the shear (σ). To get an exact solution, we consider the equation of state of the fluid to be in the stiff form. It is found that the bulk viscosity played a very important role in the history of the universe. In the presence of bulk viscosity the particles dominate over strings whereas in the absence of it, strings dominate over the particles, which is not consistent with recent observations. Also we observe that the viscosity causes the expansion of the universe to be accelerating. Our models are evolving from an early decelerating phase to a late time accelerating phase. The physical and geometrical behaviors of these models are discussed.
文摘Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism are the focus of intense interest. They appear connected to su- pernova remnants from massive stars or the merger of their remnants, and their bright- ness makes them temporarily detectable out to the largest distances yet explored in the universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, and cosmology. as well as their connections to supernovae
基金Supported by the National Natural Science Foundation of China
文摘Is it possible that the current cosmic accelerating expansion will turn into a decelerating one? Can this transition be realized by some viable theoretical model that is consistent with the standard Big Bang cosmology? We study a class of phenomeno- logical models with a transient acceleration, based on a dynamical dark energy with a very general form of equation of state Pde = αPde -- βpdem. It mimics the cosmolog- ical constant αde → const for a small scale factor a, and behaves as a barotropic gas with pde → α-3(α+1) with α 〉 0 for large a. The cosmic evolution of four models in the class has been examined in detail, and all yield a smooth transient acceleration. Depending on the specific model, the future universe may be dominated by either dark energy or by matter. In two models, the dynamical dark energy can be explicitly real- ized by a scalar field with an analytical potential V(O). Moreover, a statistical analysis shows that the models can be as robust as ACDM in confronting the observational data of Type Ia supernovae, cosmic microwave background (CMB) and baryon acoustic os- cillation. As improvements over previous studies, our models overcome the problem of over-abundance of dark energy during early eras, and satisfy the constraints on dark energy from WMAP observations of CMB.
基金supported by the National Basic Research Program of China (973 program, Nos. 2015CB857000 and 2013CB834900)the Foundation for Distinguished Young Scholars of Jiangsu Province (No. BK20140050)+1 种基金the ‘Strategic Priority Research Program the Emergence of Cosmological Structure’ of the CAS (No. XDB09010000)the National Natural Science Foundation of China (Nos. 11333008, 11233005, 11273061 and 11673065)
文摘By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.