针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的...针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的一相电压构造虚拟的对称三相系统,由此可以准确计算所需的补偿电纳,该方法计算简单,基于该方法的静止无功补偿器不需要硬件锁相环,能够快速、准确地补偿负荷的无功功率;对于电压稳定控制策略,提出了基于改进的单纯形加速算法SPX(Sim Ple X method)优化递推积分PI控制方法,以ITAE准则作为寻优目标函数,对PI控制器的参数Kp、Ki进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳,能快速、无超调地跟踪SVC系统的电压设定值。仿真和实验结果表明所提不平衡补偿和优化控制方法的可行性和有效性。展开更多
文摘针对静止无功补偿器SVC(Static Var Compensator)作为不平衡负荷补偿和电压稳定控制的工况,提出了不平衡补偿和优化控制方法。对于不平衡负荷补偿,提出基于虚拟对称三相系统的同步参考旋转坐标变换的补偿电纳计算方法,利用电网电压中的一相电压构造虚拟的对称三相系统,由此可以准确计算所需的补偿电纳,该方法计算简单,基于该方法的静止无功补偿器不需要硬件锁相环,能够快速、准确地补偿负荷的无功功率;对于电压稳定控制策略,提出了基于改进的单纯形加速算法SPX(Sim Ple X method)优化递推积分PI控制方法,以ITAE准则作为寻优目标函数,对PI控制器的参数Kp、Ki进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳,能快速、无超调地跟踪SVC系统的电压设定值。仿真和实验结果表明所提不平衡补偿和优化控制方法的可行性和有效性。