Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem ...Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.展开更多
An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained ...An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained by using a semi-random search algorithm,and secondly the connection time pair( CTP) between adjacent objects is optimized by using a genetic algorithm. After obtaining these two parameters,the final observation scheduling can be obtained. According to pre-designed tracks between each adjacent objects in observation order,the seamless observation of neighboring targets is derived by automatically steering the antenna beam,so the observation efficiency is improved.展开更多
An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives ri...An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives rise to the Multisatellite Multimode Crosslink Scheduling(MMCS)problem,which involves allocating observation requests to agile satellites,selecting appropriate timing and observation modes for the requests,and transmitting the data to the ground station via the satellite communication system.Herein,a mixed integer programming model is introduced to include all complex time and operation constraints.To solve the MMCS problem,a two-stage heuristic method,called Fast insertion Tabu Search with Conflict-avoidance(FTS-C)heuristic,is developed.In the first stage,a conflict-avoidance insertion algorithm is designed to generate a high-quality initial solution by considering the requests transmission and download.Further,the tabu search-based second stage optimizes the initial solution.Finally,an extensive empirical study based on a real-world situation demonstrates that FTS-C can generate a solution with higher quality in less time than other state-of-the-art algorithms and the CPLEX solver.展开更多
文摘Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.
基金Supported by the National Natural Science Foundation of China(61271373,61571043)111 Project of China(B14010)
文摘An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained by using a semi-random search algorithm,and secondly the connection time pair( CTP) between adjacent objects is optimized by using a genetic algorithm. After obtaining these two parameters,the final observation scheduling can be obtained. According to pre-designed tracks between each adjacent objects in observation order,the seamless observation of neighboring targets is derived by automatically steering the antenna beam,so the observation efficiency is improved.
基金supported by the National Natural Science Foundation of China(No.72001212)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200022).
文摘An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives rise to the Multisatellite Multimode Crosslink Scheduling(MMCS)problem,which involves allocating observation requests to agile satellites,selecting appropriate timing and observation modes for the requests,and transmitting the data to the ground station via the satellite communication system.Herein,a mixed integer programming model is introduced to include all complex time and operation constraints.To solve the MMCS problem,a two-stage heuristic method,called Fast insertion Tabu Search with Conflict-avoidance(FTS-C)heuristic,is developed.In the first stage,a conflict-avoidance insertion algorithm is designed to generate a high-quality initial solution by considering the requests transmission and download.Further,the tabu search-based second stage optimizes the initial solution.Finally,an extensive empirical study based on a real-world situation demonstrates that FTS-C can generate a solution with higher quality in less time than other state-of-the-art algorithms and the CPLEX solver.