To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating...To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.展开更多
Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety d...Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.展开更多
Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic th...Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.展开更多
Integrated into the development process of a chinese independent brand class sedan,optimization about occupant restraint system associated with dummy chest deceleration is studied.Based on this simulated vehicle decel...Integrated into the development process of a chinese independent brand class sedan,optimization about occupant restraint system associated with dummy chest deceleration is studied.Based on this simulated vehicle deceleration and the target vehicle′s chest deceleration,tipped equivalent square wave(TESW)is calculated by combining the average stiffness kof occupant restraint system and the average free flight time t*from the existant CNCAP(China new car assessment program)tested cars.After proposing modeling regulations of occupant restraint system and establishing mathematical dynamic modelling(MADYMO)for occupant restraint system of the target vehicle,four optimization design parameters namely vent area A,load limit L,seat belt extension ratio Band pretension force Fare selected by weighted injury criteria(WIC)rule and the first-order response surface method.The four parameters have been optimized by using orthogonal test design of four factors with five levels and the optimum combination A5L1B1F5 has been chosen by range and variance analyses.The results show that occupant restraint system performance has been optimized and improved,while meeting the chest deceleration calculation peak based on TESW.展开更多
An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular dri...An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,展开更多
Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationship...Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationships of occupant packaging and ergonomics during the vehicle interior layout design and development are analyzed. Prototypes are presented to verify the results and how to achieve the packaging is shown. Auto- mobile designers can achieve significant practical guidance for human safety, efficiency accommodation and occupant packaging of all passengers during the vehicle design process.展开更多
This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructe...This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructed by curtains to avoid glare, despite the daylighting and the exterior view. The consequences are obstructed outside view, poor daylight quality and dependency on artificial lighting. This paper assesses the impact on available daylight using parametric analysis based on daylighting dynamic computer simulations using Grasshopper and Daysim software, combining WWR (window-to-wall ratio) (40% and 80%), SVF (sky view factor) (small and large) and occupant behavior (active, intermediate and passive users). The user patterns are based in an office buildings survey that identifies preferences concerning daylight use and control of shading devices. The daylight performance criteria combine UDI (useful daylight illuminance) (500-5,000 lux) and illuminance uniformity distribution. Results confirm the impact of occupant behavior on daylighting performance. The optimum combination of external shading devices, high SVF and high window size results in a useful daylighting for 1/3 of the time for passive users and 2/3 for active users.展开更多
The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior i...The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior in buildings are categorized with their advantages and disadvantages.Being the buildings characterized by different energy usage,the presentation of the studies that applied surveys and monitoring campaigns is conducted with differentiation between residential and office buildings.展开更多
Overpopulation globally is an addressed issue impacting human lives, marine lives, and the surrounding ecosystem;it is adding pressure on the available resources that should be optimized to suit the needs. Yet with im...Overpopulation globally is an addressed issue impacting human lives, marine lives, and the surrounding ecosystem;it is adding pressure on the available resources that should be optimized to suit the needs. Yet with improper management of resources and monitoring of daily activities, the environment will be further negatively impacted. With overpopulation higher urbanization rates are noticed with the demand of seeking better health facilities, better education, better jobs and better well-being;this progression is driving more demand into the infrastructure sector to be able to accommodate the growth rates. Hence, the need to having sustainable communities aiming at optimizing the resources used, working towards more feasible, environmentally friendly and cost-effective communities with a better occupant’s experience is in action. Sustainable development goals (SDG) are vital goals developed by the United Nations Development Program (UNDP) in 2015 to address and guide through 17 interconnected global goals serving the previously mentioned trend. Out of the 17 goals, Sustainable Cities and Communities (goal #11) and Good Health and Well-Being (goal #3) are the focus of this paper directed towards holding a comparative analysis between the community scale commonly known and mostly used rating system Leadership of Energy and Environmental Design (LEED-Cities and Communities) (USA) versus similar rating systems like Tarsheed-Communities (Egypt) and Estidama-Pearl (UAE) rating systems meeting sustainable development goal #11. Conjointly, another complimenting comparative review of the occupant’s health and wellbeing rating systems, such as Fitwel (USA) and Well (USA) are studied under sustainable development goal #3;however, they are focused on a building scale assessment. Living Community Challenge (LCC, USA) rating system linking community rating system with health & wellbeing credits was first issued in 2006, yet is it not cost effective neither easy to apply acting as a primary step while being affordable, accessible, and easy to implement. The objective of this paper is to highlight the pros and gaps under both categories of studies of community rating system and occupants’ health & wellbeing rating systems based on scientific content and commercial acceptance and do-ability. This comparison is done via comparing credits and sections within each rating system type;this will support in addressing the focal points needed for an integrated rating system between both categories that will serve in meeting SDG Sustainable Cities and Communities (goal #11) and Good Health and Well-Being (goal #3).展开更多
There has been no precise information regarding occupants’ status and their portion in traffic accident. By using traffic police information, epidemiological pattern of road traffic injuries among occupants’ vehicle...There has been no precise information regarding occupants’ status and their portion in traffic accident. By using traffic police information, epidemiological pattern of road traffic injuries among occupants’ vehicles was analyzed in 2012. It was a cross sectional study. In this study, traffic police registered data in 2012 were used. Subjects were all occupants who had accident record in 2012 (81585: 77841 injured and 3744 death). Before analyzing, various preparatory steps including data control and merging were done after which data were processed. Findings showed that the mean age of the studied population was 28.7 ± 15.11 years. The highest percentage of accident occurred among car and motorcycle occupants respectively. The risk of death among the injured aged 30 - 59 years and 60+ were 1.20 and 2.23 times more than 30 years (as reference) respectively (p < 0.001). Risk of death among the injured in high ways, main roads and rural roads was 2.84 times more than in urban roads (p < 0.001). The risk of death among the injured was 2 times higher in high ways, main roads and rural secondary roads than streets (p < 0.001). Hence car and motorcycle occupants need urgent attention especially in motorways and high ways, main roads and rural secondary.展开更多
Building occupant presence during varying periods is crucial to the performance studies of buildings and city regions.However,the understanding of the building occupancies on the university campus remains limited.To a...Building occupant presence during varying periods is crucial to the performance studies of buildings and city regions.However,the understanding of the building occupancies on the university campus remains limited.To address this gap,our study employs field measurements,payment records,course arrangements,and building access systems to depict the occupancy patterns of the canteen,dormitory,library,and teaching and lab buildings during weekdays and weekends.We found that the occupancy rates across different buildings are somehow interrelated,given that the total number of occupants on campus is generally constant.Notably,dormitory occupancy rates tend to be low during the morning and afternoon course hours,which inversely correlates with the high occupancy rates in the teaching and lab buildings during these periods.Similarly,canteens experience surges in occupancy during meal times,which coincide with a decrease in library usage.Moreover,we established appliance operation schedules for dormitories through surveys and on-site investigations.Water dispensers and electronic devices were identified as the primary energy consumers for both male and female occupants,with desk-top fans and hairdryers being significant energy users for male and female occupants,respectively.These findings are essential for energy studies within a campus setting,underlining the importance of considering occupant behaviors on a regional scale.展开更多
Manually operated solar shades have a significant impact on indoor visual comfort.This research investigates occupants’appropriate seating position and view direction in a west-facing office cell using a previously d...Manually operated solar shades have a significant impact on indoor visual comfort.This research investigates occupants’appropriate seating position and view direction in a west-facing office cell using a previously developed shade behavior model.The non-dominant sorting genetic algorithm(NSGA-II)based Multi-objective optimization was adopted to identify the optimal and near optimal solutions.Daylight and glare index were used as two visual comfort objectives for optimization and robustness of optimization results against shade behavior uncertainty that was analyzed using statistical analysis.Results show that near optimal solutions can be used instead of the optimal one since they provide more flexibility in seating positions while maintaining almost the same visual comfort performance.And thus,the appropriate seating position considering occupants’preference is 1.5m away from the external window with two view directions near parallel to the window for west-facing office rooms.展开更多
A critical gap between the occupant behaviour research field and the building engineering practice limits the integration of occupant-centric strategies into simulation-aided building design and operation.Closing this...A critical gap between the occupant behaviour research field and the building engineering practice limits the integration of occupant-centric strategies into simulation-aided building design and operation.Closing this gap would contribute to the implementation of strategies that improve the occupants’well-being while reducing the buildings’environmental footprint.In this view,it is urgent to develop guidelines,standardised methods,and supporting tools that facilitate the integration of advanced occupant behaviour models into the simulation studies.One important step that needs to be fully integrated into the simulation workflow is the identification of influential and non-influential occupant behaviour aspects for a given simulation problem.Accordingly,this article advances and demonstrates the application of the Impact Indices method,a fast and efficient method for screening the potential impact of occupant behaviour on the heating and cooling demand.Specifically,the method now allows the calculation of Impact Indices quantifying the sensitivity of building energy use to occupancy,lighting use,plug-load appliances use,and blind operation at any spatial and temporal resolution.Hence,users can apply it in more detailed heating and cooling scenarios without losing information.Furthermore,they can identify which components in building design and operation require more sophisticated occupant behaviour models.An office building is used as a real case study to illustrate the application of the method and asses its performance against a one-factor-at-a-time sensitivity analysis.The Impact Indices method indicates that occupancy,lighting use and plug-load appliances have the greatest impact on the annual cooling demand of the studied office building;blind operation is influential only in the west and south façades of the building.Finally,potential applications of the method in building design and operation practice are discussed.展开更多
Occupant behavior largely influence the energy use within buildings.In the multi-occupant office,occupant behavior is affected by individual preference as well as the interaction among occupants,and yet no suitable mo...Occupant behavior largely influence the energy use within buildings.In the multi-occupant office,occupant behavior is affected by individual preference as well as the interaction among occupants,and yet no suitable model is available to precisely reflect the behavior characteristics.This paper proposed and introduced a method for innovative multi-occupant air-conditioning(AC)usage behavior modelling in a multi-occupant office,which used intuitionistic fuzzy preference relationship to describe individual behavior intention and a hierarchical structure to reflect the social relationship among multiple occupants through subjective evaluation method.The group decision-making process combined the individual behavior intention and the weights of occupants using the analytic hierarchy process.Then,the AC usage behavior of a multi-occupant office was simulated by integrating the multi-occupant model into designer’s simulation toolkit(DeST)building performance simulation software.The results of conducted analysis of a single office with multi-occupant showed that the proposed multi-occupant modelling method could quantitatively characterize the group relationships and AC usage behavior patterns.The absolute errors for the total AC operation time and frequency of the start-up periods of AC between the simulation and measurement results were only 2.7%and 2.0%,respectively.Thus,the proposed multi-occupant modelling method could realize a relatively accurate simulation of the multi-occupant behavior.展开更多
A model-based optimal dispatch framework was proposed to optimize operation of residential flexible loads considering their real-life operating characteristics,energy-related occupant behavior,and the benefits of diff...A model-based optimal dispatch framework was proposed to optimize operation of residential flexible loads considering their real-life operating characteristics,energy-related occupant behavior,and the benefits of different stakeholders.A pilot test was conducted for a typical household.According to the monitored appliance-level data,operating characteristics of flexible loads were identified and the models of these flexible loads were developed using multiple linear regression and K-means clustering methods.Moreover,a data-mining approach was developed to extract the occupant energy usage behavior of various flexible loads from the monitored data.Occupant behavior of appliance usage,such as daily turn-on times,turn-on moment,duration of each operation,preference of temperature setting,and flexibility window,were determined by the developed data-mining approach.Based on the established flexible load models and the identified occupant energy usage behavior,a many-objective nonlinear optimal dispatch model was developed aiming at minimizing daily electricity costs,occupants’dissatisfaction,CO_(2) emissions,and the average ramping index of household power profiles.The model was solved with the assistance of the NSGA-III and TOPSIS methods.Results indicate that the proposed framework can effectively optimize the operation of household flexible loads.Compared with the benchmark,the daily electricity costs,CO_(2) emissions,and average ramping index of household power profiles of the optimal plan were reduced by 7.3%,6.5%,and 14.4%,respectively,under the TOU tariff,while those were decreased by 9.5%,8.8%,and 23.8%,respectively,under the dynamic price tariff.The outputs of this work can offer guidance for the day-ahead optimal scheduling of household flexible loads in practice.展开更多
Occupant behavior(OB)is one of the significant sources of uncertainty in building performance simulation.While OB modeling has received increased attention in the past decade,research on the degree of granularity or l...Occupant behavior(OB)is one of the significant sources of uncertainty in building performance simulation.While OB modeling has received increased attention in the past decade,research on the degree of granularity or level of detail(LoD)required for representing occupants is still in the nascent stages.This paper analyzes the modeling and applicability of three LoDs to represent occupants in building performance assessment.A medium-sized prototype office building located in Chicago,Illinois is used as the simulation case study.Ten occupant-centric attributes are adopted to develop the LoDs for OB representation.We first demonstrate the different modeling approaches required for simulating the three fidelity levels.Later,we illustrate the suitability of the developed LoDs in supporting six building performance use cases across different lifecycle stages.This study intends to provide guidance for the building simulation community on appropriate OB representation to support various use cases.展开更多
Urban building energy modelling(UBEM)is considered one of the high-performance computational tools that enable analyzing energy use and the corresponding emission of different building sectors at large scales.However,...Urban building energy modelling(UBEM)is considered one of the high-performance computational tools that enable analyzing energy use and the corresponding emission of different building sectors at large scales.However,the efficiency of these models relies on their capability to estimate more realistic building performance indicators at different temporal and spatial scales.The uncertainty of modelling occupants'behaviours(OB)aspects is one of the main reasons for the discrepancy between the UBEM predicted results and the building's actual performance.As a result,research efforts focused on improving the approaches to model OB at an urban scale considering different diversity factors.On the other hand,the impact of occupants in the current practice is still considered through fixed schedules and behaviours pattern.To bridge the gap between academic efforts and practice,the applicability of OB models to be integrated into the available UBEM tools needs to be analyzed.To this end,this paper aims to investigate the flexibility and extensibility of existing UBEM tools to model OB with different approaches by(1)reviewing UBEM's current workflow and the main characteristics of its inputs,(2)reviewing the existing OB models and identifying their main characteristics and level of details that can contribute to UBEM accuracy,(3)providing a breakdown of the occupant-related features in the commonly used tools.The results of this investigation are relevant to researchers and tool developers to identify areas for improvements,as well as urban energy modellers to understand the different approaches to model OB in available tools.展开更多
To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver co...To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.展开更多
The philosophy of building energy management is going through a paradigm change from traditional,often inefficient,user-controlled systems to one that is centrally automated with the aid of IoT-enabled technologies.In...The philosophy of building energy management is going through a paradigm change from traditional,often inefficient,user-controlled systems to one that is centrally automated with the aid of IoT-enabled technologies.In this context,occupants’perceived control and building automation may seem to be in conflict.The inquiry of this study is rooted in a proposition that while building automation and centralized control systems are assumed to provide indoor comfort and conserve energy use,limiting occupants’control over their work environment may result in dissatisfaction,and in turn decrease productivity.For assessing this hypothesis,data from the post-occupancy evaluation survey of a smart building in a university in Australia was used to analyze the relationships between perceived control,satisfaction,and perceived productivity.Using structural equation modeling,we have found a positive direct effect of occupants’perceived control on overall satisfaction with their working area.Meanwhile,perceived control exerts an influence on perceived productivity through satisfaction.Furthermore,a field experiment conducted in the same building revealed the potential impact that occupant controllability can have on energy saving.We changed the default light settings from automatic on-and-offto manual-on and automatic-off,letting occupants choose themselves whether to switch the light on or not.Interestingly,about half of the participants usually kept the lights off,preferring daylight in their rooms.This also resulted in a reduction in lighting electricity use by 17.8%without any upfront investment and major technical modification.These findings emphasize the important role of perceived control on occupant satisfaction and productivity,as well as on the energy-saving potential of the user-in-the-loop automation of buildings.展开更多
Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is pollut...Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is polluted.Therefore,portable air cleaners(PACs)are increasing in use in recent years,but their effectiveness is highly dependent on the residents’habits.A typical residence in Xi’an,China was selected to examine the effects of the use of NV alone and the use of NV and PACs together on IAQ in the three occupant states,i.e.,unoc-cupied,sleeping and leisure.Parameters,such as temperature,relative humidity,CO_(2),and PM_(2.5)concentration were measured when changing the window opening and the position of the PAC.The results showed that in the unoccupied state,opening the inner door can promote a more uniform thermal and humid environment.In the sleeping state,the I/O ratio of the PM_(2.5)concentration was the lowest when the window opening of the bedroom was 1/2 or 3/4,with a mean value of 0.3.In the leisure state,only using NV,when the purification rate reaches 90%,the mean purification time of each window opening in the living room is 87.5 min.The mean purification time was reduced to 25 min when both NV and PAC were used.The on-site purification efficiencies were 91.0%and 94.5%,when the window opening was 1/2(i.e.,the PAC was placed in the center of the room)and 3/4(i.e.,the PAC was placed away from the outer window),respectively.展开更多
文摘To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.
基金supported by National Natural Science Foundation of China (Grant No. 51075180)Open Foundation of State Key Laboratory of Vehicle NVH and Safety Technology of China (Grant No.NVHSKL-201013)
文摘Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.
文摘Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.
基金supported by the National Science and Technology Support Program of China(2011BAG02B02)
文摘Integrated into the development process of a chinese independent brand class sedan,optimization about occupant restraint system associated with dummy chest deceleration is studied.Based on this simulated vehicle deceleration and the target vehicle′s chest deceleration,tipped equivalent square wave(TESW)is calculated by combining the average stiffness kof occupant restraint system and the average free flight time t*from the existant CNCAP(China new car assessment program)tested cars.After proposing modeling regulations of occupant restraint system and establishing mathematical dynamic modelling(MADYMO)for occupant restraint system of the target vehicle,four optimization design parameters namely vent area A,load limit L,seat belt extension ratio Band pretension force Fare selected by weighted injury criteria(WIC)rule and the first-order response surface method.The four parameters have been optimized by using orthogonal test design of four factors with five levels and the optimum combination A5L1B1F5 has been chosen by range and variance analyses.The results show that occupant restraint system performance has been optimized and improved,while meeting the chest deceleration calculation peak based on TESW.
文摘An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,
基金the National Natural Science Foundation of China (19832020)National Outstanding Youth Science Foundation of China(10125208)
文摘Fourteen SAE standards related to accommodation and occupant' packaging for vehicle interior are studied. The influencing factors, key reference accommodation points and major design dimensions and their relationships of occupant packaging and ergonomics during the vehicle interior layout design and development are analyzed. Prototypes are presented to verify the results and how to achieve the packaging is shown. Auto- mobile designers can achieve significant practical guidance for human safety, efficiency accommodation and occupant packaging of all passengers during the vehicle design process.
文摘This work explores three patterns of occupants’ control of window blinds and the potential influence on daylight performance of an office room in a tropical climate. In this climate, windows are frequently obstructed by curtains to avoid glare, despite the daylighting and the exterior view. The consequences are obstructed outside view, poor daylight quality and dependency on artificial lighting. This paper assesses the impact on available daylight using parametric analysis based on daylighting dynamic computer simulations using Grasshopper and Daysim software, combining WWR (window-to-wall ratio) (40% and 80%), SVF (sky view factor) (small and large) and occupant behavior (active, intermediate and passive users). The user patterns are based in an office buildings survey that identifies preferences concerning daylight use and control of shading devices. The daylight performance criteria combine UDI (useful daylight illuminance) (500-5,000 lux) and illuminance uniformity distribution. Results confirm the impact of occupant behavior on daylighting performance. The optimum combination of external shading devices, high SVF and high window size results in a useful daylighting for 1/3 of the time for passive users and 2/3 for active users.
文摘The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior in buildings are categorized with their advantages and disadvantages.Being the buildings characterized by different energy usage,the presentation of the studies that applied surveys and monitoring campaigns is conducted with differentiation between residential and office buildings.
文摘Overpopulation globally is an addressed issue impacting human lives, marine lives, and the surrounding ecosystem;it is adding pressure on the available resources that should be optimized to suit the needs. Yet with improper management of resources and monitoring of daily activities, the environment will be further negatively impacted. With overpopulation higher urbanization rates are noticed with the demand of seeking better health facilities, better education, better jobs and better well-being;this progression is driving more demand into the infrastructure sector to be able to accommodate the growth rates. Hence, the need to having sustainable communities aiming at optimizing the resources used, working towards more feasible, environmentally friendly and cost-effective communities with a better occupant’s experience is in action. Sustainable development goals (SDG) are vital goals developed by the United Nations Development Program (UNDP) in 2015 to address and guide through 17 interconnected global goals serving the previously mentioned trend. Out of the 17 goals, Sustainable Cities and Communities (goal #11) and Good Health and Well-Being (goal #3) are the focus of this paper directed towards holding a comparative analysis between the community scale commonly known and mostly used rating system Leadership of Energy and Environmental Design (LEED-Cities and Communities) (USA) versus similar rating systems like Tarsheed-Communities (Egypt) and Estidama-Pearl (UAE) rating systems meeting sustainable development goal #11. Conjointly, another complimenting comparative review of the occupant’s health and wellbeing rating systems, such as Fitwel (USA) and Well (USA) are studied under sustainable development goal #3;however, they are focused on a building scale assessment. Living Community Challenge (LCC, USA) rating system linking community rating system with health & wellbeing credits was first issued in 2006, yet is it not cost effective neither easy to apply acting as a primary step while being affordable, accessible, and easy to implement. The objective of this paper is to highlight the pros and gaps under both categories of studies of community rating system and occupants’ health & wellbeing rating systems based on scientific content and commercial acceptance and do-ability. This comparison is done via comparing credits and sections within each rating system type;this will support in addressing the focal points needed for an integrated rating system between both categories that will serve in meeting SDG Sustainable Cities and Communities (goal #11) and Good Health and Well-Being (goal #3).
文摘There has been no precise information regarding occupants’ status and their portion in traffic accident. By using traffic police information, epidemiological pattern of road traffic injuries among occupants’ vehicles was analyzed in 2012. It was a cross sectional study. In this study, traffic police registered data in 2012 were used. Subjects were all occupants who had accident record in 2012 (81585: 77841 injured and 3744 death). Before analyzing, various preparatory steps including data control and merging were done after which data were processed. Findings showed that the mean age of the studied population was 28.7 ± 15.11 years. The highest percentage of accident occurred among car and motorcycle occupants respectively. The risk of death among the injured aged 30 - 59 years and 60+ were 1.20 and 2.23 times more than 30 years (as reference) respectively (p < 0.001). Risk of death among the injured in high ways, main roads and rural roads was 2.84 times more than in urban roads (p < 0.001). The risk of death among the injured was 2 times higher in high ways, main roads and rural secondary roads than streets (p < 0.001). Hence car and motorcycle occupants need urgent attention especially in motorways and high ways, main roads and rural secondary.
基金The paper is supported by the research programme“A research on the energy consumption features of the residential buildings in the Great Bay area of Guangdong”with program ID 202201010212 under the Science and Technology Programme of Guangzhou.
文摘Building occupant presence during varying periods is crucial to the performance studies of buildings and city regions.However,the understanding of the building occupancies on the university campus remains limited.To address this gap,our study employs field measurements,payment records,course arrangements,and building access systems to depict the occupancy patterns of the canteen,dormitory,library,and teaching and lab buildings during weekdays and weekends.We found that the occupancy rates across different buildings are somehow interrelated,given that the total number of occupants on campus is generally constant.Notably,dormitory occupancy rates tend to be low during the morning and afternoon course hours,which inversely correlates with the high occupancy rates in the teaching and lab buildings during these periods.Similarly,canteens experience surges in occupancy during meal times,which coincide with a decrease in library usage.Moreover,we established appliance operation schedules for dormitories through surveys and on-site investigations.Water dispensers and electronic devices were identified as the primary energy consumers for both male and female occupants,with desk-top fans and hairdryers being significant energy users for male and female occupants,respectively.These findings are essential for energy studies within a campus setting,underlining the importance of considering occupant behaviors on a regional scale.
基金supported by the National Natural Science Foundation of China under Grant No.51878358Natural Science Foundation of Zhejiang Province under Grant No.LY18E080012National Key Technology R&D Program of the Ministry of Science and Technology under Grant 2013BAJ10B06.
文摘Manually operated solar shades have a significant impact on indoor visual comfort.This research investigates occupants’appropriate seating position and view direction in a west-facing office cell using a previously developed shade behavior model.The non-dominant sorting genetic algorithm(NSGA-II)based Multi-objective optimization was adopted to identify the optimal and near optimal solutions.Daylight and glare index were used as two visual comfort objectives for optimization and robustness of optimization results against shade behavior uncertainty that was analyzed using statistical analysis.Results show that near optimal solutions can be used instead of the optimal one since they provide more flexibility in seating positions while maintaining almost the same visual comfort performance.And thus,the appropriate seating position considering occupants’preference is 1.5m away from the external window with two view directions near parallel to the window for west-facing office rooms.
文摘A critical gap between the occupant behaviour research field and the building engineering practice limits the integration of occupant-centric strategies into simulation-aided building design and operation.Closing this gap would contribute to the implementation of strategies that improve the occupants’well-being while reducing the buildings’environmental footprint.In this view,it is urgent to develop guidelines,standardised methods,and supporting tools that facilitate the integration of advanced occupant behaviour models into the simulation studies.One important step that needs to be fully integrated into the simulation workflow is the identification of influential and non-influential occupant behaviour aspects for a given simulation problem.Accordingly,this article advances and demonstrates the application of the Impact Indices method,a fast and efficient method for screening the potential impact of occupant behaviour on the heating and cooling demand.Specifically,the method now allows the calculation of Impact Indices quantifying the sensitivity of building energy use to occupancy,lighting use,plug-load appliances use,and blind operation at any spatial and temporal resolution.Hence,users can apply it in more detailed heating and cooling scenarios without losing information.Furthermore,they can identify which components in building design and operation require more sophisticated occupant behaviour models.An office building is used as a real case study to illustrate the application of the method and asses its performance against a one-factor-at-a-time sensitivity analysis.The Impact Indices method indicates that occupancy,lighting use and plug-load appliances have the greatest impact on the annual cooling demand of the studied office building;blind operation is influential only in the west and south façades of the building.Finally,potential applications of the method in building design and operation practice are discussed.
基金This study was supported by the National Natural Science Founda-tion of China(Grant no.51978481)。
文摘Occupant behavior largely influence the energy use within buildings.In the multi-occupant office,occupant behavior is affected by individual preference as well as the interaction among occupants,and yet no suitable model is available to precisely reflect the behavior characteristics.This paper proposed and introduced a method for innovative multi-occupant air-conditioning(AC)usage behavior modelling in a multi-occupant office,which used intuitionistic fuzzy preference relationship to describe individual behavior intention and a hierarchical structure to reflect the social relationship among multiple occupants through subjective evaluation method.The group decision-making process combined the individual behavior intention and the weights of occupants using the analytic hierarchy process.Then,the AC usage behavior of a multi-occupant office was simulated by integrating the multi-occupant model into designer’s simulation toolkit(DeST)building performance simulation software.The results of conducted analysis of a single office with multi-occupant showed that the proposed multi-occupant modelling method could quantitatively characterize the group relationships and AC usage behavior patterns.The absolute errors for the total AC operation time and frequency of the start-up periods of AC between the simulation and measurement results were only 2.7%and 2.0%,respectively.Thus,the proposed multi-occupant modelling method could realize a relatively accurate simulation of the multi-occupant behavior.
基金This work was supported by the National Natural Science Foundation of China(52278104)the Science and Technology Innovation Program of Hunan Province(2017XK2015).
文摘A model-based optimal dispatch framework was proposed to optimize operation of residential flexible loads considering their real-life operating characteristics,energy-related occupant behavior,and the benefits of different stakeholders.A pilot test was conducted for a typical household.According to the monitored appliance-level data,operating characteristics of flexible loads were identified and the models of these flexible loads were developed using multiple linear regression and K-means clustering methods.Moreover,a data-mining approach was developed to extract the occupant energy usage behavior of various flexible loads from the monitored data.Occupant behavior of appliance usage,such as daily turn-on times,turn-on moment,duration of each operation,preference of temperature setting,and flexibility window,were determined by the developed data-mining approach.Based on the established flexible load models and the identified occupant energy usage behavior,a many-objective nonlinear optimal dispatch model was developed aiming at minimizing daily electricity costs,occupants’dissatisfaction,CO_(2) emissions,and the average ramping index of household power profiles.The model was solved with the assistance of the NSGA-III and TOPSIS methods.Results indicate that the proposed framework can effectively optimize the operation of household flexible loads.Compared with the benchmark,the daily electricity costs,CO_(2) emissions,and average ramping index of household power profiles of the optimal plan were reduced by 7.3%,6.5%,and 14.4%,respectively,under the TOU tariff,while those were decreased by 9.5%,8.8%,and 23.8%,respectively,under the dynamic price tariff.The outputs of this work can offer guidance for the day-ahead optimal scheduling of household flexible loads in practice.
基金supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,Office of Building Technologies of the United States Department of Energy,under Contract No.DE-AC02-05CH11231.
文摘Occupant behavior(OB)is one of the significant sources of uncertainty in building performance simulation.While OB modeling has received increased attention in the past decade,research on the degree of granularity or level of detail(LoD)required for representing occupants is still in the nascent stages.This paper analyzes the modeling and applicability of three LoDs to represent occupants in building performance assessment.A medium-sized prototype office building located in Chicago,Illinois is used as the simulation case study.Ten occupant-centric attributes are adopted to develop the LoDs for OB representation.We first demonstrate the different modeling approaches required for simulating the three fidelity levels.Later,we illustrate the suitability of the developed LoDs in supporting six building performance use cases across different lifecycle stages.This study intends to provide guidance for the building simulation community on appropriate OB representation to support various use cases.
基金supported by the Fonds de Recherche du Québec Nature et technologies (FRQNT)Research Support for New Academics (Grant#315109)the Natural Sciences and Engineering Research Council of Canada (NSERC)Discovery Grant (RGPIN-2020-06804).
文摘Urban building energy modelling(UBEM)is considered one of the high-performance computational tools that enable analyzing energy use and the corresponding emission of different building sectors at large scales.However,the efficiency of these models relies on their capability to estimate more realistic building performance indicators at different temporal and spatial scales.The uncertainty of modelling occupants'behaviours(OB)aspects is one of the main reasons for the discrepancy between the UBEM predicted results and the building's actual performance.As a result,research efforts focused on improving the approaches to model OB at an urban scale considering different diversity factors.On the other hand,the impact of occupants in the current practice is still considered through fixed schedules and behaviours pattern.To bridge the gap between academic efforts and practice,the applicability of OB models to be integrated into the available UBEM tools needs to be analyzed.To this end,this paper aims to investigate the flexibility and extensibility of existing UBEM tools to model OB with different approaches by(1)reviewing UBEM's current workflow and the main characteristics of its inputs,(2)reviewing the existing OB models and identifying their main characteristics and level of details that can contribute to UBEM accuracy,(3)providing a breakdown of the occupant-related features in the commonly used tools.The results of this investigation are relevant to researchers and tool developers to identify areas for improvements,as well as urban energy modellers to understand the different approaches to model OB in available tools.
基金Supported by Natural Science and Technology Research Project of the Jiangxi Education Department(GJJ202002, GJJ2202620)。
文摘To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.
文摘The philosophy of building energy management is going through a paradigm change from traditional,often inefficient,user-controlled systems to one that is centrally automated with the aid of IoT-enabled technologies.In this context,occupants’perceived control and building automation may seem to be in conflict.The inquiry of this study is rooted in a proposition that while building automation and centralized control systems are assumed to provide indoor comfort and conserve energy use,limiting occupants’control over their work environment may result in dissatisfaction,and in turn decrease productivity.For assessing this hypothesis,data from the post-occupancy evaluation survey of a smart building in a university in Australia was used to analyze the relationships between perceived control,satisfaction,and perceived productivity.Using structural equation modeling,we have found a positive direct effect of occupants’perceived control on overall satisfaction with their working area.Meanwhile,perceived control exerts an influence on perceived productivity through satisfaction.Furthermore,a field experiment conducted in the same building revealed the potential impact that occupant controllability can have on energy saving.We changed the default light settings from automatic on-and-offto manual-on and automatic-off,letting occupants choose themselves whether to switch the light on or not.Interestingly,about half of the participants usually kept the lights off,preferring daylight in their rooms.This also resulted in a reduction in lighting electricity use by 17.8%without any upfront investment and major technical modification.These findings emphasize the important role of perceived control on occupant satisfaction and productivity,as well as on the energy-saving potential of the user-in-the-loop automation of buildings.
基金This study was jointly funded by the National Key Research and Development Program of China(No.2016YFC0700500)the Opening Fund of Key Laboratory of Plateau Green Building and Ecological Community in Qinghai Province(No.KLKF-2020-005).
文摘Natural ventilation(NV)has been considered a simple and effective method of ventilation.However,the intro-duction of NV does not achieve better indoor air quality(IAQ)when the outdoor atmospheric environment is polluted.Therefore,portable air cleaners(PACs)are increasing in use in recent years,but their effectiveness is highly dependent on the residents’habits.A typical residence in Xi’an,China was selected to examine the effects of the use of NV alone and the use of NV and PACs together on IAQ in the three occupant states,i.e.,unoc-cupied,sleeping and leisure.Parameters,such as temperature,relative humidity,CO_(2),and PM_(2.5)concentration were measured when changing the window opening and the position of the PAC.The results showed that in the unoccupied state,opening the inner door can promote a more uniform thermal and humid environment.In the sleeping state,the I/O ratio of the PM_(2.5)concentration was the lowest when the window opening of the bedroom was 1/2 or 3/4,with a mean value of 0.3.In the leisure state,only using NV,when the purification rate reaches 90%,the mean purification time of each window opening in the living room is 87.5 min.The mean purification time was reduced to 25 min when both NV and PAC were used.The on-site purification efficiencies were 91.0%and 94.5%,when the window opening was 1/2(i.e.,the PAC was placed in the center of the room)and 3/4(i.e.,the PAC was placed away from the outer window),respectively.