期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Design and Optimization for the Occupant Restraint System of Vehicle Based on a Single Freedom Model 被引量:5
1
作者 ZHANG Junyuan MA Yue +1 位作者 CHEN Chao ZHANG Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期492-497,共6页
Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety d... Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper. 展开更多
关键词 vehicle crash occupant restraint system concept design single-degree-of-freedom occupant-vehicle model
下载PDF
Multi-Parameter and Multi-Objective Optimization of Occupant Restraint System in Frontal Collision
2
作者 XIANG Zhongke XIANG Feifei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第4期324-332,共9页
To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver co... To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver. 展开更多
关键词 occupant restraint system multi-objective optimization sensitivity analysis multi-islands genetic algorithms nonlinear programming quadratic line(NLPQL)algorithm
原文传递
Establishment and Validation for the Theoretical Model of the Vehicle Airbag 被引量:2
3
作者 ZHANG Junyuan JIN Yang +1 位作者 XIE Lizhe CHEN Chao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期487-495,共9页
The current design and optimization of the occupant restraint system(ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design... The current design and optimization of the occupant restraint system(ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests. 展开更多
关键词 occupant restraint systems airbag theoretical model concept design
下载PDF
Research and Application of Dynamic Equation for Full Frontal Impact
4
作者 Sheng Tian 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第3期101-106,共6页
Full frontal impact theory needs researching and exploring to satisfy the primary safety design of occupant restraint system,avoiding the increasingly "engineering"trend in order to develop and design safety... Full frontal impact theory needs researching and exploring to satisfy the primary safety design of occupant restraint system,avoiding the increasingly "engineering"trend in order to develop and design safety vehicle. After occupant restraint system is simulated by using linear elastic stiffness k,the occupant-vehicle frontal rigid barrier impact model is established. Dynamic equation of dummy chest coupling vehicle is built for full frontal impact based on ordinary vehicle deceleration by Hooke law,and the equation is solved by comparing coefficient and satisfying boundary qualifications. While relative vehicle characteristic parameters are kept unchanging,the actual vehicle deceleration is fitted to the simplified equivalent square wave( ESW),tipped equivalent square wave( TESW) and equivalent dual trapezoids wave( EDTW). Phase angle  and amplitude A of dynamic equations based on ESW,TESW and EDTW are calculated and deduced. The results show that: the dynamic equation of dummy chest coupling vehicle can be well utilized to instruct the primary safety design of full frontal impact for objective vehicle to satisfy chest deceleration demands and the equation based on TESW is best for this design. 展开更多
关键词 vehicle engineering full frontal impact dynamic equation DECELERATION simplified wave occupant restraint system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部