Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the ...Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
基金supported by National Natural Science Foundation of China(91128209 and 40176019)StateKey Laboratory of Marine Geology at Tongji University(MG20130306)
文摘Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.