Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oc...Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oceanographic engineering market. It also metions several influencing factors including politics, finance and ocean engineering materials.展开更多
- This paper discusses the application of fractal dimension and fractals in ocean engineering. To handle some ocean environment problems, the existing fractal method, in which the fractal dimension is a constant, can ...- This paper discusses the application of fractal dimension and fractals in ocean engineering. To handle some ocean environment problems, the existing fractal method, in which the fractal dimension is a constant, can be used. For some complicated problems in ocean engineering, this paper presents the concept of the variable dimension fractals (D = f(r)), i. e., the fractal dimension D is the function of characteristic scale r instead of a constant. By using variable dimension fractals, several deformation and stress states of offshore structures are described.展开更多
Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting...Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.展开更多
The Hartley transform is a real integral transform based on harmonic functions and has some characteristics similar to the Fourier transform. Most applications in ocean engineering requiring the Fourier transform can ...The Hartley transform is a real integral transform based on harmonic functions and has some characteristics similar to the Fourier transform. Most applications in ocean engineering requiring the Fourier transform can also be performed by the Hartley transform. The fast Hartley transform is twice faster and more convenient to handle than the corresponding fast Fourier transform, so it is a real valued alternative to the complex Fourier transform in many applications. The use of the Hartley transform in ocean engineering is presented in detail in this paper, including wave spectral analysis, separation Of waves, cross-correlation in PIV technique and expression of equation in the Hartley domain. The examples in the paper show deeply the advantage and efficiency of the Hartley transform over the Fourier transform.展开更多
With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particl...With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particle semi-implicit(MPS)techniques and their application in ocean and coastal engineering.The achievements of the MPS method in stability and accuracy,boundary conditions,and acceleration techniques are discussed.The applications of the MPS method,which are classified into two main categories,namely,multiphase flows and fluid-structure interactions,are introduced.Finally,the prospects and conclusions are highlighted.The MPS method has the potential to solve practical problems.展开更多
The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-squ...The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data.展开更多
Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating t...Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.展开更多
Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f...Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.展开更多
Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advance...Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of estuarial, coastal, offshore, and deepwater engineering with particular reference to developments. The Journal is concerned with all engineering aspects involved in the exploration and utilization of ocean resources. Topics regularly covered include research, design and construction of structures (including wharfs, dikes, breakwaters, platforms, mooring systems, etc.), instrumentation/testing (physical model and numerical model), wave dynamics, sedimentation, structural/stress analysis, soil mechanics, and material research.展开更多
Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advance...Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of estuarial, coastal, off'shore, and deepwater engineering with particular reference to developments. The Journal is concerned with all engineering aspects involved in the exploration and utilization of ocean resources. Topics regularly covered include research, design and construction of structures (including wharfs, dikes, breakwaters, platforms, mooring systems, etc.), instrumentation/testing (physical model and numerical model), wave dynamics, sedimentation, structural/stress analysis, soil mechanics, and material research.展开更多
文摘Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oceanographic engineering market. It also metions several influencing factors including politics, finance and ocean engineering materials.
文摘- This paper discusses the application of fractal dimension and fractals in ocean engineering. To handle some ocean environment problems, the existing fractal method, in which the fractal dimension is a constant, can be used. For some complicated problems in ocean engineering, this paper presents the concept of the variable dimension fractals (D = f(r)), i. e., the fractal dimension D is the function of characteristic scale r instead of a constant. By using variable dimension fractals, several deformation and stress states of offshore structures are described.
基金supported by the National Natural Science Foundation of China(51809169,51879159)Chang Jiang Scholars Program(T2014099)+2 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)National Key Research and Development Program of China(2019YFB1704203,2019YFC0312400).
文摘Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.
基金National Natural Science Foundation of China for Distinguished Young Scholars under contract No. 50125924.
文摘The Hartley transform is a real integral transform based on harmonic functions and has some characteristics similar to the Fourier transform. Most applications in ocean engineering requiring the Fourier transform can also be performed by the Hartley transform. The fast Hartley transform is twice faster and more convenient to handle than the corresponding fast Fourier transform, so it is a real valued alternative to the complex Fourier transform in many applications. The use of the Hartley transform in ocean engineering is presented in detail in this paper, including wave spectral analysis, separation Of waves, cross-correlation in PIV technique and expression of equation in the Hartley domain. The examples in the paper show deeply the advantage and efficiency of the Hartley transform over the Fourier transform.
基金Supported by the National Key Research and Development Program of China(2019YFB1704200)the National Natural Science Foundation of China(51879159,52131102).
文摘With the significant development of computer hardware,many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems.This article aims to provide a detailed review of moving particle semi-implicit(MPS)techniques and their application in ocean and coastal engineering.The achievements of the MPS method in stability and accuracy,boundary conditions,and acceleration techniques are discussed.The applications of the MPS method,which are classified into two main categories,namely,multiphase flows and fluid-structure interactions,are introduced.Finally,the prospects and conclusions are highlighted.The MPS method has the potential to solve practical problems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379195 and 41476078)the Natural Science Foundation of Shandong Province(Grant No.ZR2013EEM034)+2 种基金the Scientific Research Foundation of Science Technology Department of Zhejiang Province(Grant No.2015C34013)the Science Research Program of Zhoushan(Grant No.2014C41003)the Innovation Fund for Graduate Student of Shandong Province(Grant No.SDYY12152)
文摘The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data.
文摘Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.
文摘Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.
文摘Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of estuarial, coastal, offshore, and deepwater engineering with particular reference to developments. The Journal is concerned with all engineering aspects involved in the exploration and utilization of ocean resources. Topics regularly covered include research, design and construction of structures (including wharfs, dikes, breakwaters, platforms, mooring systems, etc.), instrumentation/testing (physical model and numerical model), wave dynamics, sedimentation, structural/stress analysis, soil mechanics, and material research.
文摘Aims and Scope Being an international journal, China Ocean Engineering takes as its prime function the integration of new research concepts, equipment, technology, materials and structures and other scientific advances within the field of estuarial, coastal, off'shore, and deepwater engineering with particular reference to developments. The Journal is concerned with all engineering aspects involved in the exploration and utilization of ocean resources. Topics regularly covered include research, design and construction of structures (including wharfs, dikes, breakwaters, platforms, mooring systems, etc.), instrumentation/testing (physical model and numerical model), wave dynamics, sedimentation, structural/stress analysis, soil mechanics, and material research.