The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitu...The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.展开更多
The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The perfo...The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square(RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M_2. The tidal energy fluxes of M_2 and K_1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.展开更多
The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model ...The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.展开更多
Tidal energy budget in the Zhujiang(Pearl River) Estuary(ZE) is evaluated by employing high-resolution baroclinic regional ocean modeling system(ROMS). The results obtained via applying the least square method o...Tidal energy budget in the Zhujiang(Pearl River) Estuary(ZE) is evaluated by employing high-resolution baroclinic regional ocean modeling system(ROMS). The results obtained via applying the least square method on the model elevations are compared against the tidal harmonic constants at 18 tide stations along the ZE and its adjacent coast. The mean absolute errors between the simulation and the observation of M_2, S_2, K_1 and O_1 are 4.6, 2.8, 3.2 and 2.8 cm in amplitudes and 9.8°, 15.0°, 4.6° and 4.6° in phase-lags, respectively. The comparisons between the simulated and observed sea level heights at 11 tide gauge stations also suggest good model performance. The total tidal energy flux incoming the ZE is estimated to be 343.49 MW in the dry season and larger than 336.18 MW in the wet season, which should due to higher mean sea level height and heavier density in the dry season. M_2, K_1, S_2, O_1 and N_2, the top five barotropic tidal energy flux contributors for the ZE,import 242.23(236.79), 52.97(52.08), 24.49(23.96), 16.22(15.91) and 7.10(6.97) MW energy flux into the ZE in dry(wet) season, successively and respectively. The enhanced turbulent mixing induced by eddies around isolated islands and sharp headlands dominated by bottom friction, interaction between tidal currents and sill topography or constricted narrow waterways together account for the five energy dissipation hotspots, which add up to about 38% of the total energy dissipation inside the ZE.展开更多
A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surf...A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surface temperature(SST) data. The Regional Ocean Modeling System(ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo fl oat profi les and MODIS SST, it is confi rmed that the ROMS reproduces the EHIU well. The cooler-water core(CWC) distinguished by waters(27) 27.5℃ in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward fl ow and the bathymetry slope played a signifi cant role in the formation of CWC. Numerical experiments indicated that the westward fl ow in the Qiongzhou Strait was the result of tidal rectifi cation over variable topography(Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2–0.4℃. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefi t the development of the CWC.展开更多
The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Car...The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of “non-identical weighted mean” is developed for computing the av-eraged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews’ theory could be verified by ground based tidal gravity observations.展开更多
The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolut...The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolutionary trend of radial sand ridges in South Yellow Sea of China, this method becomes the key to reveal the correlation betweenthe seabed topography and the hydrodynamic factor——tidal current. It is proved that using the geomorphology visualization and tidal virtual reality techniques, oceanog-raphers might be able to intuitively discover the interaction pattern of sand ridges and tidal current, predicting the development of sand ridge stability in the future. Furthermore,a prototypic software system——VROcean was designed andimplemented to examine the performance of the new visualization technology on the contrast to traditional methods.展开更多
基金The National Key Program for Developing Basic Sciences of China under contract No.2013CB956204the National Natural Science Foundation of China under contract Nos 41275084 and 41576025the Strategic Priority Research of the Chinese Academy of Science under contract Nos XDA01020304 and DA05110302
文摘The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.
基金The National Natural Science Foundation of China(NSFC)-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the National Natural Science Foundation of China under contract No.41406027+1 种基金the National Basic Research Program(973 Program)of China under contract No.2010CB950300the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No.CHINARE04-04
文摘The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square(RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M_2. The tidal energy fluxes of M_2 and K_1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-133)National Nature Science Foundation of China (40730316, 40574034).
文摘The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.
基金The National Natural Science Foundation of China under contract No.41476002the Shandong Province Natural Science Foundation under contract No.ZR2014DQ013the Shandong Scientific and Technological Development Program under contract No.2013GHY11502
文摘Tidal energy budget in the Zhujiang(Pearl River) Estuary(ZE) is evaluated by employing high-resolution baroclinic regional ocean modeling system(ROMS). The results obtained via applying the least square method on the model elevations are compared against the tidal harmonic constants at 18 tide stations along the ZE and its adjacent coast. The mean absolute errors between the simulation and the observation of M_2, S_2, K_1 and O_1 are 4.6, 2.8, 3.2 and 2.8 cm in amplitudes and 9.8°, 15.0°, 4.6° and 4.6° in phase-lags, respectively. The comparisons between the simulated and observed sea level heights at 11 tide gauge stations also suggest good model performance. The total tidal energy flux incoming the ZE is estimated to be 343.49 MW in the dry season and larger than 336.18 MW in the wet season, which should due to higher mean sea level height and heavier density in the dry season. M_2, K_1, S_2, O_1 and N_2, the top five barotropic tidal energy flux contributors for the ZE,import 242.23(236.79), 52.97(52.08), 24.49(23.96), 16.22(15.91) and 7.10(6.97) MW energy flux into the ZE in dry(wet) season, successively and respectively. The enhanced turbulent mixing induced by eddies around isolated islands and sharp headlands dominated by bottom friction, interaction between tidal currents and sill topography or constricted narrow waterways together account for the five energy dissipation hotspots, which add up to about 38% of the total energy dissipation inside the ZE.
基金Supported by the National Natural Science Foundation of China(No.41476002)the Shandong Province Natural Science Foundation(No.ZR2014DQ013)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1409)
文摘A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surface temperature(SST) data. The Regional Ocean Modeling System(ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo fl oat profi les and MODIS SST, it is confi rmed that the ROMS reproduces the EHIU well. The cooler-water core(CWC) distinguished by waters(27) 27.5℃ in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward fl ow and the bathymetry slope played a signifi cant role in the formation of CWC. Numerical experiments indicated that the westward fl ow in the Qiongzhou Strait was the result of tidal rectifi cation over variable topography(Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2–0.4℃. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefi t the development of the CWC.
基金supported jointly by the Knowledge Innovation Project(Grant No.KZCX3-SW-131)the Hundred Talents Program,the Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant No.40374029)the Key International Scientific Cooperation Project via the Ministry of Sciences and Technology of China(Grant No.2002CB713904).
文摘The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of “non-identical weighted mean” is developed for computing the av-eraged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews’ theory could be verified by ground based tidal gravity observations.
基金This work was conducted as part of the production of the research projects supported by the National Natural Science Foundation of China (Grant No. 49701013) the Chinese National Institutes of Technology (Grant No. 96-922-03-01).
文摘The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolutionary trend of radial sand ridges in South Yellow Sea of China, this method becomes the key to reveal the correlation betweenthe seabed topography and the hydrodynamic factor——tidal current. It is proved that using the geomorphology visualization and tidal virtual reality techniques, oceanog-raphers might be able to intuitively discover the interaction pattern of sand ridges and tidal current, predicting the development of sand ridge stability in the future. Furthermore,a prototypic software system——VROcean was designed andimplemented to examine the performance of the new visualization technology on the contrast to traditional methods.