期刊文献+
共找到7,971篇文章
< 1 2 250 >
每页显示 20 50 100
Linearized waveform inversion for vertical transversely isotropic elastic media:Methodology and multi-parameter crosstalk analysis
1
作者 Ke Chen Lu Liu +5 位作者 Li-Nan Xu Fei Hu Yuan Yang Jia-Hui Zuo Le-Le Zhang Yang Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期252-271,共20页
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit... Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs. 展开更多
关键词 ELASTIC ANISOTROPY Least-squares imaging waveform inversion Computational geophysics
下载PDF
Full waveform inversion based on hybrid gradient
2
作者 Chuang Xie Zhi-Liang Qin +5 位作者 Jian-Hua Wang Peng Song Heng-Guang Shen Sheng-Qi Yu Ben-Jun Ma Xue-Qin Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1660-1670,共11页
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ... The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability. 展开更多
关键词 Full waveform inversion Hybrid gradient Scattering angle weighted Low-wavenumber component
下载PDF
First-Arrival Picking Method for Active Source Data with Ocean Bottom Seismometers Based on Spatial Waveform Variation Characteristics
3
作者 LIU Hongwei XING Lei +3 位作者 ZHU Henghua ZHANG Jin ZHANG Jing LIU Huaishan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期970-980,共11页
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo... The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data. 展开更多
关键词 first-arrival picking spatial waveform variation label cross-correlation superposition method
下载PDF
Co-Sharing Waveform Design for Millimeter-Wave Radar Communication Systems
4
作者 Cui Gaofeng He Mengmin +2 位作者 Xu Lexi Wang Changheng Wang Weidong 《China Communications》 SCIE CSCD 2024年第6期305-318,共14页
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co... Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation. 展开更多
关键词 co-sharing waveform MILLIMETER-WAVE radar communication radar sensing range and velocity estimation
下载PDF
Underwater Pulse Waveform Recognition Based on Hash Aggregate Discriminant Network
5
作者 WANG Fangchen ZHONG Guoqiang WANG Liang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期654-660,共7页
Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary... Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP. 展开更多
关键词 convolutional channel hash aggregate discriminative network aggregate discriminant loss waveform recognition
下载PDF
Joint Design of ISAC Waveform Under PAPR Constraints
6
作者 Chen Yating Wen Cai +4 位作者 Huang Yan Liang Le Li Jie Zhang Hui Hong Wei 《China Communications》 SCIE CSCD 2024年第7期186-211,共26页
In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication m... In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance. 展开更多
关键词 ambiguity function integrated sensing and communication MIMO OFDM PAPR waveform design
下载PDF
Simultaneous Waveform Inverse Modelling for Litho-Fluid Prediction in an Old Marginal, “Agbbo”Field, Onshore Niger Delta, Nigeria
7
作者 Charles Chibueze Ugbor Peter Ogobi Odong Chukwuemeka Austine Okonkwo 《Journal of Geoscience and Environment Protection》 2024年第5期40-59,共20页
Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with un... Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field. 展开更多
关键词 Simultaneous waveform Inversion Lithofacies Fluid Type Rock Physics HYDROCARBON Acoustic Impedance Mu-Rho Reservoir
下载PDF
Microseismic event waveform classification using CNN-based transfer learning models 被引量:2
8
作者 Longjun Dong Hongmei Shu +1 位作者 Zheng Tang Xianhang Yan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1203-1216,共14页
The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster ... The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster prevention.Currently,this work is primarily performed by skilled technicians,which results in severe workloads and inefficiency.In this paper,CNN-based transfer learning combined with computer vision technology was used to achieve automatic recognition and classification of multichannel microseismic signal waveforms.First,data collected by MMS was generated into 6-channel original waveforms based on events.After that,sample data sets of microseismic events,blasts,drillings,and noises were established through manual identification.These datasets were split into training sets and test sets according to a certain proportion,and transfer learning was performed on AlexNet,GoogLeNet,and ResNet50 pre-training network models,respectively.After training and tuning,optimal models were retained and compared with support vector machine classification.Results show that transfer learning models perform well on different test sets.Overall,GoogLeNet performed best,with a recognition accuracy of 99.8%.Finally,the possible effects of the number of training sets and the imbalance of different types of sample data on the accuracy and effectiveness of classification models were discussed. 展开更多
关键词 Mine safety Machine learning Transfer learning Microseismic events waveform classification Image identification and classification
下载PDF
Inconsistent effect of dynamic load waveform on macro-and micro-scale responses of ballast bed characterized in individual cycle:a numerical study 被引量:2
9
作者 Longlong Fu Yuexiao Zheng +1 位作者 Yongjia Qiu Shunhua Zhou 《Railway Engineering Science》 2023年第4期370-380,共11页
Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,... Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification. 展开更多
关键词 Railway ballast Particle movements Contact distribution waveform sensitivity 3D discrete element method
下载PDF
Multi-Sinusoidal Waveform Shaping for Integrated Data and Energy Transfer in Aging Channels 被引量:1
10
作者 Jie Hu Yaping Hou Kun Yang 《China Communications》 SCIE CSCD 2023年第4期243-258,共16页
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp... Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI. 展开更多
关键词 integrated data and energy transfer(IDET) wireless energy transfer(WET) simultaneous wireless information and power transfer(SWIPT) carrier-frequency-offset(CFO) waveform aging channels outdated channel state information(CSI) orthogonal frequency division multiplexing(OFDM)
下载PDF
A Comprehensive Survey of Candidate Waveforms for 5G, beyond 5G and 6G Wireless Communication Systems
11
作者 Bakhit Amine Adoum Kalsouabe Zoukalne +3 位作者 Mahamat Saleh Idriss Ali Mahmoud Ali Amir Moungache Mahamoud Youssouf Khayal 《Open Journal of Applied Sciences》 CAS 2023年第1期136-161,共26页
The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their servic... The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their service offerings. These generations of mobile networks were initially invented to meet the requirements of the above-mentioned applications. However, as the requirements in these applications continue to increase, new mobile technologies such as 5G (fifth generation), 5G and beyond (B5G, beyond fifth generation), and 6G (sixth generation) are still progressing and being experimented. These networks are very heterogeneous generations of mobile networks that will have to offer very high throughput per user, good energy efficiency, better traffic capacity per area, improved spectral efficiency, very low latency, and high mobility. To meet these requirements, the radio interface of future mobile networks will have to be flexible and rationalized the available frequency resources. Therefore, new modulation methods, access techniques and waveforms capable of supporting these technological changes are proposed. This review presents brief descriptions of the types of 5G, B5G, and 6G waveforms. The 5G consists of OFDM including its transmission techniques: generalized frequency division multiplexing (GFDM), filter bank based multi-carrier (FBMC), universal filtered multi-carrier (UFMC), and index modulation (IM). Meanwhile, the 6G covers orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM) and orthogonal time sequence multiplexing (OTSM). The networks’ potentialities, advantages, disadvantages, and future directions are outlined. 展开更多
关键词 MODULATION 5G B5G 6G waveformS
下载PDF
Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
12
作者 李玉冰 王建 +3 位作者 苏畅 林伟军 王秀明 骆毅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期362-372,共11页
High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In additi... High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In addition,it is particularly important for building digital human acoustic models,which form a reference for future ultrasound research.Conventional ultrasound modalities can hardly image the human brain at high spatial resolution inside the skull due to the strong impedance contrast between hard tissue and soft tissue.We carry out numerical experiments to demonstrate that the time-domain waveform inversion technique,originating from the geophysics community,is promising to deliver quantitative images of human brains within the skull at a sub-millimeter level by using ultra-sound signals.The successful implementation of such an approach to brain imaging requires the following items:signals of sub-megahertz frequencies transmitting across the inside of skull,an accurate numerical wave equation solver simulating the wave propagation,and well-designed inversion schemes to reconstruct the physical parameters of targeted model based on the optimization theory.Here we propose an innovative modality of multiscale deconvolutional waveform inversion that improves ultrasound imaging resolution,by evaluating the similarity between synthetic data and observed data through using limited length Wiener filter.We implement the proposed approach to iteratively update the parametric models of the human brain.The quantitative imaging method paves the way for building the accurate acoustic brain model to diagnose associated diseases,in a potentially more portable,more dynamic and safer way than magnetic resonance imaging and x-ray computed tomography. 展开更多
关键词 ultrasound brain imaging full waveform inversion high resolution digital body
下载PDF
Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
13
作者 陈炎波 李保昌 +3 位作者 李胥红 唐翔宇 张弛 金成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期319-326,共8页
Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-... Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-color waveform on generation of macroscopic HHG in soft x-rays. We find that the dependence of HHG yields on laser focus at low or high gas pressure is sensitive to the characteristics of single-atom harmonic response, in which “short”-or “long”-trajectory emissions can be selectively controlled by changing the waveform of two-color synthesized laser pulse. We uncover the phase-matching mechanism of HHG in the gas medium by examining the propagation of the two-color waveform and the evolution of time-frequency emissions of high-harmonic field. We further reveal that the nonlinear effects, such as geometric phase, atomic dispersion, and plasma defocusing, are responsible for modification of two-color waveform upon propagation. This work can be used to find better macroscopic conditions for generating soft x-ray HHG by employing two-color optimized waveforms. 展开更多
关键词 high-order harmonic generation two-color waveform soft x-rays macroscopic propagation laser focus
下载PDF
A Rayleigh Wave Globally Optimal Full Waveform Inversion Framework Based on GPU Parallel Computing
14
作者 Zhao Le Wei Zhang +3 位作者 Xin Rong Yiming Wang Wentao Jin Zhengxuan Cao 《Journal of Geoscience and Environment Protection》 2023年第3期327-338,共12页
Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limi... Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. . 展开更多
关键词 Full waveform Inversion Finite-Difference Method Globally Optimal Framework GPU Parallel Computing Particle Swarm Optimization
下载PDF
Study on Quantitative Prediction Method of Interlayer Based on Seismic Waveform
15
作者 Jianmin Zhang Xijie Wang +2 位作者 Pengfei Mu Liande Zhou Yuanpeng Jiang 《Open Journal of Applied Sciences》 2023年第6期813-822,共10页
Taking the fluvial reservoir of the Neogene Minghuazhen Formation in Bozhong S oilfield in China as an example, a detailed study of the interlayer in the reservoir was conducted. From the perspective of sedimentary ge... Taking the fluvial reservoir of the Neogene Minghuazhen Formation in Bozhong S oilfield in China as an example, a detailed study of the interlayer in the reservoir was conducted. From the perspective of sedimentary genesis of the interlayer, three types of genesis of the interlayer are summarized and analyzed, namely, fine grain sediment in the inter peak channel, suspended sediment in the post flood channel, and abandoned channel sediment. At the same time, combined with seismic waveform analysis, the distribution characteristics and morphology of the interlayer in complex fluvial facies oilfield are carefully depicted, and the horizontal well optimization implementation is guided based on the planar and three-dimensional spatial distribution characteristics of the interlayer. This method enriches the characterization technology of interlayer in offshore oilfields, and has important guiding significance for the overall evaluation and development research of complex fluvial facies oilfields. 展开更多
关键词 Fluvial Facies INTERLAYER Genetic Analysis Seismic waveform
下载PDF
Shaped Offset Quadrature Phase Shift Keying Based Waveform for Fifth Generation Communication
16
作者 R.Ann Caroline Jenifer M.A.Bhagyaveni +1 位作者 V.Saroj Malini M.Shanmugapriya 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2165-2176,共12页
Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many o... Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM. 展开更多
关键词 5G waveform orthogonal frequency division multiplexing shaped offset quadrature phase shift keying wireless open access research platform
下载PDF
面向通信感知一体化的信号波形设计综述 被引量:1
17
作者 吕明 陈昊 +3 位作者 丰光银 王丹 仇琛 许晓东 《无线电通信技术》 北大核心 2024年第3期469-483,共15页
通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和... 通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。 展开更多
关键词 6G 通信感知一体化 波形设计
下载PDF
考虑PWM波形特征的纳米晶磁心损耗模型的研究及验证 被引量:2
18
作者 赵志刚 贾慧杰 +2 位作者 刘朝阳 赵安琪 高鹏旭 《电工技术学报》 EI CSCD 北大核心 2024年第6期1602-1612,共11页
磁心损耗精确预测对于电力电子变压器的优化设计至关重要。然而,传统的磁心损耗模型在复杂激励下适用性较差,尤其对于占空比可调、高次谐波含量丰富的PWM波磁心损耗预测,计算精度显著下降。基于Jordan损耗分离模型,建立了一种考虑PWM波... 磁心损耗精确预测对于电力电子变压器的优化设计至关重要。然而,传统的磁心损耗模型在复杂激励下适用性较差,尤其对于占空比可调、高次谐波含量丰富的PWM波磁心损耗预测,计算精度显著下降。基于Jordan损耗分离模型,建立了一种考虑PWM波形特征的磁心损耗计算方法。首先,该方法根据激励波形特征,推导出相应的波形系数及等效频率来计算PWM波激励下的动态涡流损耗,将Jordan模型的适用范围从正弦拓展到PWM波激励下的磁心损耗计算;然后,分析了不同占空比激励下激励波形有效频率及高次谐波含量变化对损耗系数的影响,并对其进行数学表征,实现了整个占空比范围内磁心损耗的精确预测;最后,搭建了高频非正弦激励下软磁材料磁特性测量平台,针对1K107B纳米晶材料,测量了两种典型PWM波激励下的损耗数据。实验结果表明,所建立的磁心损耗模型具有较高的计算精度,相比于传统的Steinmetz改进公式,整体精度提高了25%。 展开更多
关键词 纳米晶 磁心损耗 PWM波形特征 Jordan模型
下载PDF
复杂动态负荷幅度域波形模态聚类与电能表误差敏感特征 被引量:1
19
作者 王学伟 顾鹏婷 +2 位作者 袁瑞铭 李文文 王国兴 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期92-100,共9页
针对复杂动态负荷游程波形模态及引起电能表误差的典型特征认识不足的问题,首先提出动态电流信号幅度域游程波形模态提取算法,提取了多种幅度域毫秒级小颗粒度游程波形模态;其次,提出LK-Shape游程波形模态聚类算法,提取了动态电流信号... 针对复杂动态负荷游程波形模态及引起电能表误差的典型特征认识不足的问题,首先提出动态电流信号幅度域游程波形模态提取算法,提取了多种幅度域毫秒级小颗粒度游程波形模态;其次,提出LK-Shape游程波形模态聚类算法,提取了动态电流信号幅度域的6类典型游程波形模态及其快速变化特征;最后,提出导致电能表超差的两种敏感游程波形模态,并通过实验验证了该游程波形模态适于测试电能表误差,表明了所提方法的有效性和实用性。 展开更多
关键词 动态电能计量 波形模态聚类 波形特征提取 信号典型特征 信号敏感特征
下载PDF
雷达波形对抗技术发展预见
20
作者 胡卫东 杜小勇 +1 位作者 鲍庆龙 殷加鹏 《国防科技》 2024年第1期15-21,47,共8页
随着雷达、电子侦察等传感器技术的进步,对电磁空间的操控从能量、频率向更高维度的波形发展,雷达波形对抗应运而生。阐述雷达波形对抗技术产生的背景、概念内涵和发展现状,同时提出可利用博弈思维建立雷达波形“OODA”回路,通过对雷达... 随着雷达、电子侦察等传感器技术的进步,对电磁空间的操控从能量、频率向更高维度的波形发展,雷达波形对抗应运而生。阐述雷达波形对抗技术产生的背景、概念内涵和发展现状,同时提出可利用博弈思维建立雷达波形“OODA”回路,通过对雷达波形进行伪装、扰乱和利用以达成制造战场迷雾、创造新质杀伤链的效果。此外,介绍实现雷达波形对抗的波形隐匿、波形重建与利用、波形捷变反侦察等关键技术及原理。从波形管控等3个方面提出雷达波形对抗制胜电磁空间的发展建议。 展开更多
关键词 雷达波形 雷达波形对抗技术 电磁空间 OODA 反侦察
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部